veghar commited on
Commit
ccffb70
1 Parent(s): a5ab72b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -2,6 +2,7 @@
2
  {}
3
  ---
4
 
 
5
 
6
  This is a model for word-based spell correction tasks. This model is generated by fine-tuning bart base model.
7
 
@@ -9,12 +10,12 @@ This model works best for word-based spell correction(not so good with the seque
9
 
10
 
11
 
12
-
13
-
14
-
15
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
16
  tokenizer = AutoTokenizer.from_pretrained("veghar/spell_correct_bart_base")
17
  model = AutoModelForSeq2SeqLM.from_pretrained("veghar/spell_correct_bart_base")
 
18
  text='believ'
19
  text_tok=tokenizer(text,padding=True, return_tensors='tf')
20
  input_ids = text_tok['input_ids']
@@ -24,5 +25,7 @@ corrected_sentences = tokenizer.batch_decode(outputs, skip_special_tokens=True)
24
  print('Misspelled word:', text)
25
  print('Corrected word:', corrected_sentences)
26
 
27
- >Misspelled word: believ
28
- >Corrected word: ['believe', 'belief', 'believer']
 
 
 
2
  {}
3
  ---
4
 
5
+ # Model Card for Model ID
6
 
7
  This is a model for word-based spell correction tasks. This model is generated by fine-tuning bart base model.
8
 
 
10
 
11
 
12
 
13
+ ## How to Get Started with the Model
14
+ ```python
 
15
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
16
  tokenizer = AutoTokenizer.from_pretrained("veghar/spell_correct_bart_base")
17
  model = AutoModelForSeq2SeqLM.from_pretrained("veghar/spell_correct_bart_base")
18
+
19
  text='believ'
20
  text_tok=tokenizer(text,padding=True, return_tensors='tf')
21
  input_ids = text_tok['input_ids']
 
25
  print('Misspelled word:', text)
26
  print('Corrected word:', corrected_sentences)
27
 
28
+
29
+ >>Misspelled word: believ
30
+ >>Corrected word: ['believe', 'belief', 'believer']
31
+ ```