vasista22's picture
Update README.md
3f78b6d
|
raw
history blame
1.73 kB
---
language:
- kn
license: apache-2.0
tags:
- whisper-event
metrics:
- wer
model-index:
- name: Whisper Kannada Tiny - Vasista Sai Lodagala
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: kn_in
split: test
metrics:
- type: wer
value: 13.38
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Kannada Tiny
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Kannada data available from multiple publicly available ASR corpuses.
It has been fine-tuned as a part of the Whisper fine-tuning sprint.
## Training and evaluation data
Training Data: MILE ASR Corpus, ULCA ASR Corpus, Shrutilipi ASR Corpus, Google/Fleurs Train+Dev set.
Evaluation Data: Google/Fleurs Test set, MILE Test set, OpenSLR.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 88
- eval_batch_size: 88
- seed: 22
- optimizer: adamw_bnb_8bit
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- training_steps: 15008 (terminated upon convergence. Initially set to 51570 steps)
- mixed_precision_training: True
## Acknowledgement
This work was done at Speech Lab, IITM.
The compute resources for this work were funded by "Bhashini: National Language translation Mission" project of the Ministry of Electronics and Information Technology (MeitY), Government of India.