|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
base_model: sshleifer/distilbart-cnn-12-6 |
|
model-index: |
|
- name: distilbart-cnn-12-6-summarization_final_labeled_data |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbart-cnn-12-6-summarization_final_labeled_data |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0858 |
|
- Rouge1: 76.5974 |
|
- Rouge2: 66.1659 |
|
- Rougel: 71.9284 |
|
- Rougelsum: 75.2459 |
|
- Gen Len: 122.5 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 99 | 0.2852 | 61.0841 | 45.81 | 52.9835 | 59.0452 | 116.92 | |
|
| No log | 2.0 | 198 | 0.1547 | 71.534 | 59.9905 | 66.4697 | 70.5213 | 117.56 | |
|
| No log | 3.0 | 297 | 0.1100 | 71.6464 | 59.0112 | 67.3835 | 70.5206 | 117.24 | |
|
| No log | 4.0 | 396 | 0.0960 | 77.9213 | 67.6116 | 73.7888 | 76.8473 | 123.62 | |
|
| No log | 5.0 | 495 | 0.0858 | 76.5974 | 66.1659 | 71.9284 | 75.2459 | 122.5 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|