Upload handler.py with huggingface_hub
Browse files- handler.py +117 -0
handler.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
class EndpointHandler:
|
| 7 |
+
def __init__(self, path=""):
|
| 8 |
+
"""
|
| 9 |
+
Initialize the endpoint handler with the model and tokenizer.
|
| 10 |
+
|
| 11 |
+
:param path: Path to the model weights
|
| 12 |
+
"""
|
| 13 |
+
# Determine the device
|
| 14 |
+
self.torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
|
| 16 |
+
# Load tokenizer and model
|
| 17 |
+
self.tokenizer = PegasusTokenizer.from_pretrained(path)
|
| 18 |
+
self.model = PegasusForConditionalGeneration.from_pretrained(path).to(self.torch_device)
|
| 19 |
+
|
| 20 |
+
def split_into_paragraphs(self, text: str) -> List[str]:
|
| 21 |
+
"""
|
| 22 |
+
Split text into paragraphs while preserving empty lines.
|
| 23 |
+
|
| 24 |
+
:param text: Input text
|
| 25 |
+
:return: List of paragraphs
|
| 26 |
+
"""
|
| 27 |
+
paragraphs = text.split('\n\n')
|
| 28 |
+
return [p.strip() for p in paragraphs if p.strip()]
|
| 29 |
+
|
| 30 |
+
def split_into_sentences(self, paragraph: str) -> List[str]:
|
| 31 |
+
"""
|
| 32 |
+
Split paragraph into sentences using regex.
|
| 33 |
+
|
| 34 |
+
:param paragraph: Input paragraph
|
| 35 |
+
:return: List of sentences
|
| 36 |
+
"""
|
| 37 |
+
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
|
| 38 |
+
return [s.strip() for s in sentences if s.strip()]
|
| 39 |
+
|
| 40 |
+
def get_response(self, input_text: str, num_return_sequences: int = 1) -> str:
|
| 41 |
+
"""
|
| 42 |
+
Generate paraphrased text for a single input.
|
| 43 |
+
|
| 44 |
+
:param input_text: Input sentence to paraphrase
|
| 45 |
+
:param num_return_sequences: Number of alternative paraphrases to generate
|
| 46 |
+
:return: Paraphrased text
|
| 47 |
+
"""
|
| 48 |
+
batch = self.tokenizer.prepare_seq2seq_batch(
|
| 49 |
+
[input_text],
|
| 50 |
+
truncation=True,
|
| 51 |
+
padding='longest',
|
| 52 |
+
max_length=80,
|
| 53 |
+
return_tensors="pt"
|
| 54 |
+
).to(self.torch_device)
|
| 55 |
+
|
| 56 |
+
translated = self.model.generate(
|
| 57 |
+
**batch,
|
| 58 |
+
num_beams=10,
|
| 59 |
+
num_return_sequences=num_return_sequences,
|
| 60 |
+
temperature=1.0,
|
| 61 |
+
repetition_penalty=2.8,
|
| 62 |
+
length_penalty=1.2,
|
| 63 |
+
max_length=80,
|
| 64 |
+
min_length=5,
|
| 65 |
+
no_repeat_ngram_size=3
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
tgt_text = self.tokenizer.batch_decode(translated, skip_special_tokens=True)
|
| 69 |
+
return tgt_text[0]
|
| 70 |
+
|
| 71 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 72 |
+
"""
|
| 73 |
+
Process the incoming request and generate paraphrased text.
|
| 74 |
+
|
| 75 |
+
:param data: Request payload containing input text
|
| 76 |
+
:return: Paraphrased text
|
| 77 |
+
"""
|
| 78 |
+
# Extract input text from the payload
|
| 79 |
+
inputs = data.pop("inputs", data)
|
| 80 |
+
|
| 81 |
+
# If input is not a string, raise an error
|
| 82 |
+
if not isinstance(inputs, str):
|
| 83 |
+
raise ValueError("Input must be a string")
|
| 84 |
+
|
| 85 |
+
# Split text into paragraphs
|
| 86 |
+
paragraphs = self.split_into_paragraphs(inputs)
|
| 87 |
+
paraphrased_paragraphs = []
|
| 88 |
+
|
| 89 |
+
# Process each paragraph
|
| 90 |
+
for paragraph in paragraphs:
|
| 91 |
+
sentences = self.split_into_sentences(paragraph)
|
| 92 |
+
paraphrased_sentences = []
|
| 93 |
+
|
| 94 |
+
for sentence in sentences:
|
| 95 |
+
# Skip very short sentences
|
| 96 |
+
if len(sentence.split()) < 3:
|
| 97 |
+
paraphrased_sentences.append(sentence)
|
| 98 |
+
continue
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
# Paraphrase the sentence
|
| 102 |
+
paraphrased = self.get_response(sentence)
|
| 103 |
+
|
| 104 |
+
# Avoid unwanted paraphrases
|
| 105 |
+
if not any(phrase in paraphrased.lower() for phrase in ['it\'s like', 'in other words']):
|
| 106 |
+
paraphrased_sentences.append(paraphrased)
|
| 107 |
+
else:
|
| 108 |
+
paraphrased_sentences.append(sentence)
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"Error processing sentence: {e}")
|
| 111 |
+
paraphrased_sentences.append(sentence)
|
| 112 |
+
|
| 113 |
+
# Join sentences back into a paragraph
|
| 114 |
+
paraphrased_paragraphs.append(' '.join(paraphrased_sentences))
|
| 115 |
+
|
| 116 |
+
# Join paragraphs back into text
|
| 117 |
+
return {"outputs": '\n\n'.join(paraphrased_paragraphs)}
|