huwenxing commited on
Commit
a9522ba
1 Parent(s): 83fdb73

First model version

Browse files
README.md ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ ---
4
+ # InternLM
5
+
6
+ <div align="center">
7
+
8
+ <img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/>
9
+ <div>&nbsp;</div>
10
+ <div align="center">
11
+ <b><font size="5">InternLM</font></b>
12
+ <sup>
13
+ <a href="https://internlm.intern-ai.org.cn/">
14
+ <i><font size="4">HOT</font></i>
15
+ </a>
16
+ </sup>
17
+ <div>&nbsp;</div>
18
+ </div>
19
+
20
+ [![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
21
+
22
+ [💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
23
+
24
+ </div>
25
+
26
+
27
+ ## Introduction
28
+
29
+ InternLM has open-sourced a 7 billion parameter base model and a chat model tailored for practical scenarios. The model has the following characteristics:
30
+ - It leverages trillions of high-quality tokens for training to establish a powerful knowledge base.
31
+ - It supports an 8k context window length, enabling longer input sequences and stronger reasoning capabilities.
32
+ - It provides a versatile toolset for users to flexibly build their own workflows.
33
+
34
+ ## InternLM-7B
35
+
36
+ ### Performance Evaluation
37
+
38
+ We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
39
+
40
+ | Datasets\Models | **InternLM-Chat-7B** | **InternLM-7B** | LLaMA-7B | Baichuan-7B | ChatGLM2-6B | Alpaca-7B | Vicuna-7B |
41
+ | -------------------- | --------------------- | ---------------- | --------- | --------- | ------------ | --------- | ---------- |
42
+ | C-Eval(Val) | 53.2 | 53.4 | 24.2 | 42.7 | 50.9 | 28.9 | 31.2 |
43
+ | MMLU | 50.8 | 51.0 | 35.2* | 41.5 | 46.0 | 39.7 | 47.3 |
44
+ | AGIEval | 42.5 | 37.6 | 20.8 | 24.6 | 39.0 | 24.1 | 26.4 |
45
+ | CommonSenseQA | 75.2 | 59.5 | 65.0 | 58.8 | 60.0 | 68.7 | 66.7 |
46
+ | BUSTM | 74.3 | 50.6 | 48.5 | 51.3 | 55.0 | 48.8 | 62.5 |
47
+ | CLUEWSC | 78.6 | 59.1 | 50.3 | 52.8 | 59.8 | 50.3 | 52.2 |
48
+ | MATH | 6.4 | 7.1 | 2.8 | 3.0 | 6.6 | 2.2 | 2.8 |
49
+ | GSM8K | 34.5 | 31.2 | 10.1 | 9.7 | 29.2 | 6.0 | 15.3 |
50
+ | HumanEval | 14.0 | 10.4 | 14.0 | 9.2 | 9.2 | 9.2 | 11.0 |
51
+ | RACE(High) | 76.3 | 57.4 | 46.9* | 28.1 | 66.3 | 40.7 | 54.0 |
52
+
53
+ - The evaluation results were obtained from [OpenCompass 20230706](https://github.com/internLM/OpenCompass/) (some data marked with *, which means come from the original papers), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
54
+ - The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
55
+
56
+
57
+ **Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
58
+
59
+ ### Import from Transformers
60
+ To load the InternLM 7B Chat model using Transformers, use the following code:
61
+ ```python
62
+ import torch
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
+ tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
65
+ # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and cause OOM Error.
66
+ model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
67
+ model = model.eval()
68
+ response, history = model.chat(tokenizer, "hello", history=[])
69
+ print(response)
70
+ # Hello! How can I help you today?
71
+ response, history = model.chat(tokenizer, "please provide three suggestions about time management", history=history)
72
+ print(response)
73
+ # Sure, here are three tips for effective time management:
74
+ #
75
+ # 1. Prioritize tasks based on importance and urgency: Make a list of all your tasks and categorize them into "important and urgent," "important but not urgent," and "not important but urgent." Focus on completing the tasks in the first category before moving on to the others.
76
+ # 2. Use a calendar or planner: Write down deadlines and appointments in a calendar or planner so you don't forget them. This will also help you schedule your time more effectively and avoid overbooking yourself.
77
+ # 3. Minimize distractions: Try to eliminate any potential distractions when working on important tasks. Turn off notifications on your phone, close unnecessary tabs on your computer, and find a quiet place to work if possible.
78
+ #
79
+ # Remember, good time management skills take practice and patience. Start with small steps and gradually incorporate these habits into your daily routine.
80
+ ```
81
+
82
+ The responses can be streamed using `stream_chat`:
83
+
84
+ ```python
85
+ import torch
86
+ from transformers import AutoModelForCausalLM, AutoTokenizer
87
+
88
+ model_path = "internlm/internlm-chat-7b"
89
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True)
90
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
91
+
92
+ model = model.eval()
93
+ length = 0
94
+ for response, history in model.stream_chat(tokenizer, "Hello", history=[]):
95
+ print(response[length:], flush=True, end="")
96
+ length = len(response)
97
+ ```
98
+
99
+ ### Dialogue
100
+
101
+ You can interact with the InternLM Chat 7B model through a frontend interface by running the following code:
102
+ ```bash
103
+ pip install streamlit==1.24.0
104
+ pip install transformers==4.30.2
105
+ streamlit run web_demo.py
106
+ ```
107
+ The effect is as follows
108
+
109
+ ![demo](https://github.com/InternLM/InternLM/assets/9102141/11b60ee0-47e4-42c0-8278-3051b2f17fe4)
110
+
111
+ ## Open Source License
112
+
113
+ The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <internlm@pjlab.org.cn>.
114
+
115
+ ## 简介
116
+ InternLM ,即书生·浦语大模型,包含面向实用场景的70亿参数基础模型与对话模型 (InternLM-7B)。模型具有以下特点:
117
+ - 使用上万亿高质量预料,建立模型超强知识体系;
118
+ - 支持8k语境窗口长度,实现更长输入与更强推理体验;
119
+ - 通用工具调用能力,支持用户灵活自助搭建流程;
120
+
121
+ ## InternLM-7B
122
+
123
+ ### 性能评测
124
+
125
+ 我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
126
+
127
+ | 数据集\模型 | **InternLM-Chat-7B** | **InternLM-7B** | LLaMA-7B | Baichuan-7B | ChatGLM2-6B | Alpaca-7B | Vicuna-7B |
128
+ | -------------------- | --------------------- | ---------------- | --------- | --------- | ------------ | --------- | ---------- |
129
+ | C-Eval(Val) | 53.2 | 53.4 | 24.2 | 42.7 | 50.9 | 28.9 | 31.2 |
130
+ | MMLU | 50.8 | 51.0 | 35.2* | 41.5 | 46.0 | 39.7 | 47.3 |
131
+ | AGIEval | 42.5 | 37.6 | 20.8 | 24.6 | 39.0 | 24.1 | 26.4 |
132
+ | CommonSenseQA | 75.2 | 59.5 | 65.0 | 58.8 | 60.0 | 68.7 | 66.7 |
133
+ | BUSTM | 74.3 | 50.6 | 48.5 | 51.3 | 55.0 | 48.8 | 62.5 |
134
+ | CLUEWSC | 78.6 | 59.1 | 50.3 | 52.8 | 59.8 | 50.3 | 52.2 |
135
+ | MATH | 6.4 | 7.1 | 2.8 | 3.0 | 6.6 | 2.2 | 2.8 |
136
+ | GSM8K | 34.5 | 31.2 | 10.1 | 9.7 | 29.2 | 6.0 | 15.3 |
137
+ | HumanEval | 14.0 | 10.4 | 14.0 | 9.2 | 9.2 | 9.2 | 11.0 |
138
+ | RACE(High) | 76.3 | 57.4 | 46.9* | 28.1 | 66.3 | 40.7 | 54.0 |
139
+
140
+ - 以上评测结果基于 [OpenCompass 20230706](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表数据来自原始论文),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
141
+ - ��测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
142
+
143
+ **局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
144
+
145
+ ### 通过 Transformers 加载
146
+ 通过以下的代码加载 InternLM 7B Chat 模型
147
+ ```python
148
+ import torch
149
+ from transformers import AutoTokenizer, AutoModelForCausalLM
150
+ tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
151
+ # `torch_dtype=torch.float16` 可以令模型以 float16 精度加载,否则 transformers 会将模型加载为 float32,导致显存不足
152
+ model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
153
+ model = model.eval()
154
+ response, history = model.chat(tokenizer, "你好", history=[])
155
+ print(response)
156
+ # 你好!有什么我可以帮助你的吗?
157
+ response, history = model.chat(tokenizer, "请提供三个管理时间的建议。", history=history)
158
+ print(response)
159
+ # 当然可以!以下是三个管理时间的建议:
160
+ # 1. 制定计划:制定一个详细的计划,包括每天要完成的任务和活动。这将有助于您更好地组织时间,并确保您能够按时完成任务。
161
+ # 2. 优先级:将任务按照优先级排序,先完成最重要的任务。这将确保您能够在最短的时间内完成最重要的任务,从而节省时间。
162
+ # 3. 集中注意力:避免分心,集中注意力完成任务。关闭社交媒体和电子邮件通知,专注于任务,这将帮助您更快地完成任务,并减少错误的可能性。
163
+ ```
164
+
165
+ 如果想进行流式生成,则可以使用 `stream_chat` 接口:
166
+
167
+ ```python
168
+ import torch
169
+ from transformers import AutoModelForCausalLM, AutoTokenizer
170
+
171
+ model_path = "internlm/internlm-chat-7b"
172
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dype=torch.float16, trust_remote_code=True)
173
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
174
+
175
+ model = model.eval()
176
+ length = 0
177
+ for response, history in model.stream_chat(tokenizer, "你好", history=[]):
178
+ print(response[length:], flush=True, end="")
179
+ length = len(response)
180
+ ```
181
+
182
+ ### 通过前端网页对话
183
+ 可以通过以下代码启动一个前端的界面来与 InternLM Chat 7B 模型进行交互
184
+ ```bash
185
+ pip install streamlit==1.24.0
186
+ pip install transformers==4.30.2
187
+ streamlit run web_demo.py
188
+ ```
189
+ 效果如下
190
+
191
+ ![效果](https://github.com/InternLM/InternLM/assets/9102141/11b60ee0-47e4-42c0-8278-3051b2f17fe4)
192
+
193
+ ## 开源许可证
194
+
195
+ 本仓库的代码依照 Apache-2.0 协议开源。模型权重对学术研究完全开放,也可申请免费的商业使用授权([申请表](https://wj.qq.com/s2/12725412/f7c1/))。其他问题与合作请联系 <internlm@pjlab.org.cn>。
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLMForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internlm.InternLMConfig",
7
+ "AutoModel": "modeling_internlm.InternLMForCausalLM",
8
+ "AutoModelForCausalLM": "modeling_internlm.InternLMForCausalLM"
9
+ },
10
+ "bias": true,
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 2048,
18
+ "model_type": "internlm",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "pad_token_id": 2,
22
+ "rms_norm_eps": 1e-06,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.29.2",
26
+ "use_cache": true,
27
+ "vocab_size": 103168,
28
+ "rotary": {
29
+ "base": 10000,
30
+ "type": "dynamic"
31
+ }
32
+ }
configuration_internlm.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ InternLM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class InternLMConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
+ an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`InternLMModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
53
+ The non-linear activation function (function or string) in the decoder.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
56
+ just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 0.02):
58
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
60
+ The epsilon used by the rms normalization layers.
61
+ use_cache (`bool`, *optional*, defaults to `True`):
62
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
63
+ relevant if `config.is_decoder=True`.
64
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
65
+ Whether to tie weight embeddings
66
+ Example:
67
+
68
+ ```python
69
+ >>> from transformers import InternLMModel, InternLMConfig
70
+
71
+ >>> # Initializing a InternLM internlm-7b style configuration
72
+ >>> configuration = InternLMConfig()
73
+
74
+ >>> # Initializing a model from the internlm-7b style configuration
75
+ >>> model = InternLMModel(configuration)
76
+
77
+ >>> # Accessing the model configuration
78
+ >>> configuration = model.config
79
+ ```"""
80
+ model_type = "internlm"
81
+ _auto_class = "AutoConfig"
82
+
83
+ def __init__( # pylint: disable=W0102
84
+ self,
85
+ vocab_size=103168,
86
+ hidden_size=4096,
87
+ intermediate_size=11008,
88
+ num_hidden_layers=32,
89
+ num_attention_heads=32,
90
+ hidden_act="silu",
91
+ max_position_embeddings=2048,
92
+ initializer_range=0.02,
93
+ rms_norm_eps=1e-6,
94
+ use_cache=True,
95
+ pad_token_id=0,
96
+ bos_token_id=1,
97
+ eos_token_id=2,
98
+ tie_word_embeddings=False,
99
+ bias=True,
100
+ rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
101
+ **kwargs,
102
+ ):
103
+ self.vocab_size = vocab_size
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.hidden_size = hidden_size
106
+ self.intermediate_size = intermediate_size
107
+ self.num_hidden_layers = num_hidden_layers
108
+ self.num_attention_heads = num_attention_heads
109
+ self.hidden_act = hidden_act
110
+ self.initializer_range = initializer_range
111
+ self.rms_norm_eps = rms_norm_eps
112
+ self.use_cache = use_cache
113
+ self.bias = bias
114
+ self.rotary = rotary
115
+ super().__init__(
116
+ pad_token_id=pad_token_id,
117
+ bos_token_id=bos_token_id,
118
+ eos_token_id=eos_token_id,
119
+ tie_word_embeddings=tie_word_embeddings,
120
+ **kwargs,
121
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.29.2"
7
+ }
modeling_internlm.py ADDED
@@ -0,0 +1,1086 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch InternLM model."""
21
+ import math
22
+ import queue
23
+ import threading
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+ from transformers.activations import ACT2FN
31
+ from transformers.generation.streamers import BaseStreamer
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ )
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import (
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+
45
+ from .configuration_internlm import InternLMConfig
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "InternLMConfig"
50
+
51
+
52
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
53
+ def _make_causal_mask(
54
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
55
+ ):
56
+ """
57
+ Make causal mask used for bi-directional self-attention.
58
+ """
59
+ bsz, tgt_len = input_ids_shape
60
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
61
+ mask_cond = torch.arange(mask.size(-1), device=device)
62
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
63
+ mask = mask.to(dtype)
64
+
65
+ if past_key_values_length > 0:
66
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
68
+
69
+
70
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
71
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
+ """
73
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
+ """
75
+ bsz, src_len = mask.size()
76
+ tgt_len = tgt_len if tgt_len is not None else src_len
77
+
78
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
+
80
+ inverted_mask = 1.0 - expanded_mask
81
+
82
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
83
+
84
+
85
+ class InternLMRMSNorm(nn.Module):
86
+ """RMSNorm implemention."""
87
+
88
+ def __init__(self, hidden_size, eps=1e-6):
89
+ """
90
+ InternLMRMSNorm is equivalent to T5LayerNorm
91
+ """
92
+ super().__init__()
93
+ self.weight = nn.Parameter(torch.ones(hidden_size))
94
+ self.variance_epsilon = eps
95
+
96
+ def forward(self, hidden_states):
97
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
98
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
99
+
100
+ # convert into half-precision if necessary
101
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
102
+ hidden_states = hidden_states.to(self.weight.dtype)
103
+
104
+ return self.weight * hidden_states
105
+
106
+
107
+ class InternLMRotaryEmbedding(torch.nn.Module):
108
+ """Implement InternLM's rotary embedding.
109
+
110
+ Args:
111
+ dim (int): Characteristic dimension of each self-attentional head.
112
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
113
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
114
+ device (Any, optional): Running device. Defaults to None.
115
+ """
116
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
117
+ super().__init__()
118
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
119
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
120
+
121
+ # Build here to make `torch.jit.trace` work.
122
+ self.max_seq_len_cached = max_position_embeddings
123
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
124
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
125
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
126
+ emb = torch.cat((freqs, freqs), dim=-1)
127
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
128
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
129
+
130
+ def forward(self, x, seq_len=None):
131
+ # x: [bs, num_attention_heads, seq_len, head_size]
132
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
133
+ if seq_len > self.max_seq_len_cached:
134
+ self.max_seq_len_cached = seq_len
135
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
136
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
137
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
138
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
139
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
140
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
141
+ return (
142
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
143
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
144
+ )
145
+
146
+
147
+ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
148
+ """Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
149
+
150
+ Args:
151
+ dim (int): Characteristic dimension of each self-attentional head.
152
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
153
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
154
+ device (Any, optional): Running device. Defaults to None.
155
+ scaling_factor (float, optional): NTK method extrapolation coefficient. Defaults to 1.0.
156
+ """
157
+
158
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
159
+ super().__init__()
160
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
161
+ self.register_buffer("inv_freq", inv_freq)
162
+ self.dim = dim
163
+ self.base = base
164
+ self.scaling_factor = scaling_factor
165
+
166
+ # Build here to make `torch.jit.trace` work.
167
+ self.max_position_embeddings = max_position_embeddings
168
+ self.max_seq_len_cached = max_position_embeddings
169
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
170
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
171
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
172
+ emb = torch.cat((freqs, freqs), dim=-1)
173
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
174
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
175
+
176
+ def _update_cached(self, x, seq_len=None):
177
+ self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
178
+ if seq_len > self.max_position_embeddings:
179
+ base = self.base * (
180
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
181
+ ) ** (self.dim / (self.dim - 2))
182
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
183
+ else:
184
+ inv_freq = self.inv_freq
185
+ t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
186
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
187
+ emb = torch.cat((freqs, freqs), dim=-1)
188
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
189
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
190
+
191
+ def forward(self, x, seq_len=None):
192
+ # x: [bs, num_attention_heads, seq_len, head_size]
193
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
194
+ if seq_len <= self.max_position_embeddings:
195
+ # Reset the tables if the sequence length has changed,
196
+ if self.max_seq_len_cached > self.max_position_embeddings:
197
+ self._update_cached(x, seq_len)
198
+ else:
199
+ self._update_cached(x, seq_len)
200
+
201
+ return (
202
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
203
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
204
+ )
205
+
206
+
207
+ def rotate_half(x):
208
+ """Rotates half the hidden dims of the input."""
209
+ x1 = x[..., : x.shape[-1] // 2]
210
+ x2 = x[..., x.shape[-1] // 2 :]
211
+ return torch.cat((-x2, x1), dim=-1)
212
+
213
+
214
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
215
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
216
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
217
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
218
+ cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
219
+ sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
220
+ if q.size(2) == 1:
221
+ q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
222
+ else:
223
+ q_embed = (q * cos) + (rotate_half(q) * sin)
224
+
225
+ if k.size(2) == 1:
226
+ k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
227
+ else:
228
+ k_embed = (k * cos) + (rotate_half(k) * sin)
229
+
230
+ return q_embed, k_embed
231
+
232
+
233
+ class InternLMMLP(nn.Module):
234
+ def __init__(
235
+ self,
236
+ hidden_size: int,
237
+ intermediate_size: int,
238
+ hidden_act: str,
239
+ ):
240
+ super().__init__()
241
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
242
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
243
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
244
+ self.act_fn = ACT2FN[hidden_act]
245
+
246
+ def forward(self, x):
247
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
248
+
249
+
250
+ class InternLMAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: InternLMConfig):
254
+ super().__init__()
255
+ self.config = config
256
+ self.hidden_size = config.hidden_size
257
+ self.num_heads = config.num_attention_heads
258
+ self.head_dim = self.hidden_size // self.num_heads
259
+ self.max_position_embeddings = config.max_position_embeddings
260
+
261
+ if (self.head_dim * self.num_heads) != self.hidden_size:
262
+ raise ValueError(
263
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
264
+ f" and `num_heads`: {self.num_heads})."
265
+ )
266
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
267
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
268
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
269
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
270
+ self.rotary_emb = self._init_rope()
271
+
272
+ def _init_rope(self):
273
+ if self.config.rotary["type"] == "origin":
274
+ self.rotary_emb = InternLMRotaryEmbedding(
275
+ self.head_dim,
276
+ max_position_embeddings=self.max_position_embeddings,
277
+ base=self.config.rotary["base"],
278
+ )
279
+ elif self.config.rotary["type"] == "dynamic":
280
+ self.rotary_emb = InternLMDynamicNTKScalingRotaryEmbedding(
281
+ self.head_dim,
282
+ max_position_embeddings=self.max_position_embeddings,
283
+ base=self.config.rotary["base"],
284
+ scaling_factor=self.config.rotary.get("scaling_factor", 1.0),
285
+ )
286
+ else:
287
+ raise ValueError("Currently we only support rotary embedding's type being one of ('origin', 'dynamic').")
288
+ return self.rotary_emb
289
+
290
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
291
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
292
+
293
+ def forward(
294
+ self,
295
+ hidden_states: torch.Tensor,
296
+ attention_mask: Optional[torch.Tensor] = None,
297
+ position_ids: Optional[torch.LongTensor] = None,
298
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
299
+ output_attentions: bool = False,
300
+ use_cache: bool = False,
301
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
302
+ bsz, q_len, _ = hidden_states.size()
303
+
304
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
305
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
306
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
307
+
308
+ if past_key_value is not None:
309
+ # reuse k, v, self_attention
310
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
311
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
312
+
313
+ # print(use_cache)
314
+ past_key_value = (key_states, value_states) if use_cache else None
315
+
316
+ kv_seq_len = key_states.shape[-2]
317
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
318
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
319
+
320
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
321
+
322
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
323
+ raise ValueError(
324
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
325
+ f" {attn_weights.size()}"
326
+ )
327
+
328
+ if attention_mask is not None:
329
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
330
+ raise ValueError(
331
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
332
+ )
333
+ attn_weights = attn_weights + attention_mask
334
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
335
+
336
+ # upcast attention to fp32
337
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
338
+ attn_output = torch.matmul(attn_weights, value_states)
339
+
340
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
341
+ raise ValueError(
342
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
343
+ f" {attn_output.size()}"
344
+ )
345
+
346
+ attn_output = attn_output.transpose(1, 2)
347
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
348
+
349
+ attn_output = self.o_proj(attn_output)
350
+
351
+ if not output_attentions:
352
+ attn_weights = None
353
+
354
+ return attn_output, attn_weights, past_key_value
355
+
356
+
357
+ class InternLMDecoderLayer(nn.Module):
358
+ def __init__(self, config: InternLMConfig):
359
+ super().__init__()
360
+ self.hidden_size = config.hidden_size
361
+ self.self_attn = InternLMAttention(config=config)
362
+ self.mlp = InternLMMLP(
363
+ hidden_size=self.hidden_size,
364
+ intermediate_size=config.intermediate_size,
365
+ hidden_act=config.hidden_act,
366
+ )
367
+ self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+ self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
369
+
370
+ def forward(
371
+ self,
372
+ hidden_states: torch.Tensor,
373
+ attention_mask: Optional[torch.Tensor] = None,
374
+ position_ids: Optional[torch.LongTensor] = None,
375
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
376
+ output_attentions: Optional[bool] = False,
377
+ use_cache: Optional[bool] = False,
378
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
379
+ """
380
+ Args:
381
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
382
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
383
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
384
+ output_attentions (`bool`, *optional*):
385
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
386
+ returned tensors for more detail.
387
+ use_cache (`bool`, *optional*):
388
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
389
+ (see `past_key_values`).
390
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
391
+ """
392
+
393
+ residual = hidden_states
394
+
395
+ hidden_states = self.input_layernorm(hidden_states)
396
+
397
+ # Self Attention
398
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
399
+ hidden_states=hidden_states,
400
+ attention_mask=attention_mask,
401
+ position_ids=position_ids,
402
+ past_key_value=past_key_value,
403
+ output_attentions=output_attentions,
404
+ use_cache=use_cache,
405
+ )
406
+ hidden_states = residual + hidden_states
407
+
408
+ # Fully Connected
409
+ residual = hidden_states
410
+ hidden_states = self.post_attention_layernorm(hidden_states)
411
+ hidden_states = self.mlp(hidden_states)
412
+ hidden_states = residual + hidden_states
413
+
414
+ outputs = (hidden_states,)
415
+
416
+ if output_attentions:
417
+ outputs += (self_attn_weights,)
418
+
419
+ if use_cache:
420
+ outputs += (present_key_value,)
421
+
422
+ return outputs
423
+
424
+
425
+ INTERNLM_START_DOCSTRING = r"""
426
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
427
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
428
+ etc.)
429
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
430
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
431
+ and behavior.
432
+ Parameters:
433
+ config ([`InternLMConfig`]):
434
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
435
+ load the weights associated with the model, only the configuration. Check out the
436
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
437
+ """
438
+
439
+
440
+ @add_start_docstrings(
441
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
442
+ INTERNLM_START_DOCSTRING,
443
+ )
444
+ class InternLMPreTrainedModel(PreTrainedModel):
445
+ config_class = InternLMConfig
446
+ base_model_prefix = "model"
447
+ supports_gradient_checkpointing = True
448
+ _no_split_modules = ["InternLMDecoderLayer"]
449
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
450
+
451
+ def _init_weights(self, module):
452
+ std = self.config.initializer_range
453
+ if isinstance(module, nn.Linear):
454
+ module.weight.data.normal_(mean=0.0, std=std)
455
+ if module.bias is not None:
456
+ module.bias.data.zero_()
457
+ elif isinstance(module, nn.Embedding):
458
+ module.weight.data.normal_(mean=0.0, std=std)
459
+ if module.padding_idx is not None:
460
+ module.weight.data[module.padding_idx].zero_()
461
+
462
+ def _set_gradient_checkpointing(self, module, value=False):
463
+ if isinstance(module, InternLMModel):
464
+ module.gradient_checkpointing = value
465
+
466
+
467
+ INTERNLM_INPUTS_DOCSTRING = r"""
468
+ Args:
469
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
470
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
471
+ it.
472
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
473
+ [`PreTrainedTokenizer.__call__`] for details.
474
+ [What are input IDs?](../glossary#input-ids)
475
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
476
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
477
+ - 1 for tokens that are **not masked**,
478
+ - 0 for tokens that are **masked**.
479
+ [What are attention masks?](../glossary#attention-mask)
480
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
481
+ [`PreTrainedTokenizer.__call__`] for details.
482
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
483
+ `past_key_values`).
484
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
485
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
486
+ information on the default strategy.
487
+ - 1 indicates the head is **not masked**,
488
+ - 0 indicates the head is **masked**.
489
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
490
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
491
+ config.n_positions - 1]`.
492
+ [What are position IDs?](../glossary#position-ids)
493
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
494
+ when `config.use_cache=True`):
495
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
496
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
497
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
498
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
499
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
500
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
501
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
502
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
503
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
504
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
505
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
506
+ model's internal embedding lookup matrix.
507
+ use_cache (`bool`, *optional*):
508
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
509
+ `past_key_values`).
510
+ output_attentions (`bool`, *optional*):
511
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
512
+ tensors for more detail.
513
+ output_hidden_states (`bool`, *optional*):
514
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
515
+ more detail.
516
+ return_dict (`bool`, *optional*):
517
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
518
+ """
519
+
520
+
521
+ @add_start_docstrings(
522
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
523
+ INTERNLM_START_DOCSTRING,
524
+ )
525
+ class InternLMModel(InternLMPreTrainedModel):
526
+ """
527
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
528
+ Args:
529
+ config: InternLMConfig
530
+ """
531
+
532
+ _auto_class = "AutoModel"
533
+
534
+ def __init__(self, config: InternLMConfig):
535
+ super().__init__(config)
536
+ self.padding_idx = config.pad_token_id
537
+ self.vocab_size = config.vocab_size
538
+
539
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
540
+ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
541
+ self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
542
+
543
+ self.gradient_checkpointing = False
544
+ # Initialize weights and apply final processing
545
+ self.post_init()
546
+
547
+ def get_input_embeddings(self):
548
+ return self.embed_tokens
549
+
550
+ def set_input_embeddings(self, value):
551
+ self.embed_tokens = value
552
+
553
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
554
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
555
+ # create causal mask
556
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
557
+ combined_attention_mask = None
558
+ if input_shape[-1] > 1:
559
+ combined_attention_mask = _make_causal_mask(
560
+ input_shape,
561
+ inputs_embeds.dtype,
562
+ device=inputs_embeds.device,
563
+ past_key_values_length=past_key_values_length,
564
+ )
565
+
566
+ if attention_mask is not None:
567
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
568
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
569
+ inputs_embeds.device
570
+ )
571
+ combined_attention_mask = (
572
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
573
+ )
574
+
575
+ return combined_attention_mask
576
+
577
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
578
+ def forward(
579
+ self,
580
+ input_ids: torch.LongTensor = None,
581
+ attention_mask: Optional[torch.Tensor] = None,
582
+ position_ids: Optional[torch.LongTensor] = None,
583
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
584
+ inputs_embeds: Optional[torch.FloatTensor] = None,
585
+ use_cache: Optional[bool] = None,
586
+ output_attentions: Optional[bool] = None,
587
+ output_hidden_states: Optional[bool] = None,
588
+ return_dict: Optional[bool] = None,
589
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
590
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
591
+ output_hidden_states = (
592
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
593
+ )
594
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
595
+
596
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
597
+
598
+ # retrieve input_ids and inputs_embeds
599
+ if input_ids is not None and inputs_embeds is not None:
600
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
601
+ elif input_ids is not None:
602
+ batch_size, seq_length = input_ids.shape
603
+ elif inputs_embeds is not None:
604
+ batch_size, seq_length, _ = inputs_embeds.shape
605
+ else:
606
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
607
+
608
+ seq_length_with_past = seq_length
609
+ past_key_values_length = 0
610
+
611
+ if past_key_values is not None:
612
+ past_key_values_length = past_key_values[0][0].shape[2]
613
+ seq_length_with_past = seq_length_with_past + past_key_values_length
614
+
615
+ if position_ids is None:
616
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
617
+ position_ids = torch.arange(
618
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
619
+ )
620
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
621
+ else:
622
+ position_ids = position_ids.view(-1, seq_length).long()
623
+
624
+ if inputs_embeds is None:
625
+ inputs_embeds = self.embed_tokens(input_ids)
626
+ # embed positions
627
+ if attention_mask is None:
628
+ attention_mask = torch.ones(
629
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
630
+ )
631
+ attention_mask = self._prepare_decoder_attention_mask(
632
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
633
+ )
634
+
635
+ hidden_states = inputs_embeds
636
+
637
+ if self.gradient_checkpointing and self.training:
638
+ if use_cache:
639
+ logger.warning_once(
640
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
641
+ )
642
+ use_cache = False
643
+
644
+ # decoder layers
645
+ all_hidden_states = () if output_hidden_states else None
646
+ all_self_attns = () if output_attentions else None
647
+ next_decoder_cache = () if use_cache else None
648
+
649
+ for idx, decoder_layer in enumerate(self.layers):
650
+ if output_hidden_states:
651
+ all_hidden_states += (hidden_states,)
652
+
653
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
654
+
655
+ if self.gradient_checkpointing and self.training:
656
+
657
+ def create_custom_forward(module):
658
+ def custom_forward(*inputs):
659
+ # None for past_key_value
660
+ return module(*inputs, output_attentions, None)
661
+
662
+ return custom_forward
663
+
664
+ layer_outputs = torch.utils.checkpoint.checkpoint(
665
+ create_custom_forward(decoder_layer),
666
+ hidden_states,
667
+ attention_mask,
668
+ position_ids,
669
+ None,
670
+ )
671
+ else:
672
+ layer_outputs = decoder_layer(
673
+ hidden_states,
674
+ attention_mask=attention_mask,
675
+ position_ids=position_ids,
676
+ past_key_value=past_key_value,
677
+ output_attentions=output_attentions,
678
+ use_cache=use_cache,
679
+ )
680
+
681
+ hidden_states = layer_outputs[0]
682
+
683
+ if use_cache:
684
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
685
+
686
+ if output_attentions:
687
+ all_self_attns += (layer_outputs[1],)
688
+
689
+ hidden_states = self.norm(hidden_states)
690
+
691
+ # add hidden states from the last decoder layer
692
+ if output_hidden_states:
693
+ all_hidden_states += (hidden_states,)
694
+
695
+ next_cache = next_decoder_cache if use_cache else None
696
+ if not return_dict:
697
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
698
+ return BaseModelOutputWithPast(
699
+ last_hidden_state=hidden_states,
700
+ past_key_values=next_cache,
701
+ hidden_states=all_hidden_states,
702
+ attentions=all_self_attns,
703
+ )
704
+
705
+
706
+ class InternLMForCausalLM(InternLMPreTrainedModel):
707
+ _auto_class = "AutoModelForCausalLM"
708
+
709
+ def __init__(self, config):
710
+ super().__init__(config)
711
+ self.model = InternLMModel(config)
712
+
713
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
714
+
715
+ # Initialize weights and apply final processing
716
+ self.post_init()
717
+
718
+ def get_input_embeddings(self):
719
+ return self.model.embed_tokens
720
+
721
+ def set_input_embeddings(self, value):
722
+ self.model.embed_tokens = value
723
+
724
+ def get_output_embeddings(self):
725
+ return self.lm_head
726
+
727
+ def set_output_embeddings(self, new_embeddings):
728
+ self.lm_head = new_embeddings
729
+
730
+ def set_decoder(self, decoder):
731
+ self.model = decoder
732
+
733
+ def get_decoder(self):
734
+ return self.model
735
+
736
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
737
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
738
+ def forward(
739
+ self,
740
+ input_ids: torch.LongTensor = None,
741
+ attention_mask: Optional[torch.Tensor] = None,
742
+ position_ids: Optional[torch.LongTensor] = None,
743
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
744
+ inputs_embeds: Optional[torch.FloatTensor] = None,
745
+ labels: Optional[torch.LongTensor] = None,
746
+ use_cache: Optional[bool] = None,
747
+ output_attentions: Optional[bool] = None,
748
+ output_hidden_states: Optional[bool] = None,
749
+ return_dict: Optional[bool] = None,
750
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
751
+ r"""
752
+ Args:
753
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
754
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
755
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
756
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
757
+ Returns:
758
+ Example:
759
+ ```python
760
+ >>> from transformers import AutoTokenizer, InternLMForCausalLM
761
+ >>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
762
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
763
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
764
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
765
+ >>> # Generate
766
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
767
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
768
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
769
+ ```"""
770
+
771
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
772
+ output_hidden_states = (
773
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
774
+ )
775
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
776
+
777
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
778
+ outputs = self.model(
779
+ input_ids=input_ids,
780
+ attention_mask=attention_mask,
781
+ position_ids=position_ids,
782
+ past_key_values=past_key_values,
783
+ inputs_embeds=inputs_embeds,
784
+ use_cache=use_cache,
785
+ output_attentions=output_attentions,
786
+ output_hidden_states=output_hidden_states,
787
+ return_dict=return_dict,
788
+ )
789
+
790
+ hidden_states = outputs[0]
791
+ logits = self.lm_head(hidden_states)
792
+
793
+ loss = None
794
+ if labels is not None:
795
+ # Shift so that tokens < n predict n
796
+ shift_logits = logits[..., :-1, :].contiguous()
797
+ shift_labels = labels[..., 1:].contiguous()
798
+ # Flatten the tokens
799
+ loss_fct = CrossEntropyLoss()
800
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
801
+ shift_labels = shift_labels.view(-1)
802
+ # Enable model parallelism
803
+ shift_labels = shift_labels.to(shift_logits.device)
804
+ loss = loss_fct(shift_logits, shift_labels)
805
+
806
+ if not return_dict:
807
+ output = (logits,) + outputs[1:]
808
+ return (loss,) + output if loss is not None else output
809
+
810
+ return CausalLMOutputWithPast(
811
+ loss=loss,
812
+ logits=logits,
813
+ past_key_values=outputs.past_key_values,
814
+ hidden_states=outputs.hidden_states,
815
+ attentions=outputs.attentions,
816
+ )
817
+
818
+ def prepare_inputs_for_generation(
819
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
820
+ ):
821
+ if past_key_values:
822
+ input_ids = input_ids[:, -1:]
823
+
824
+ position_ids = kwargs.get("position_ids", None)
825
+ if attention_mask is not None and position_ids is None:
826
+ # create position_ids on the fly for batch generation
827
+ position_ids = attention_mask.long().cumsum(-1) - 1
828
+ position_ids.masked_fill_(attention_mask == 0, 1)
829
+ if past_key_values:
830
+ position_ids = position_ids[:, -1].unsqueeze(-1)
831
+
832
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
833
+ if inputs_embeds is not None and past_key_values is None:
834
+ model_inputs = {"inputs_embeds": inputs_embeds}
835
+ else:
836
+ model_inputs = {"input_ids": input_ids}
837
+
838
+ model_inputs.update(
839
+ {
840
+ "position_ids": position_ids,
841
+ "past_key_values": past_key_values,
842
+ "use_cache": kwargs.get("use_cache"),
843
+ "attention_mask": attention_mask,
844
+ }
845
+ )
846
+ return model_inputs
847
+
848
+ @staticmethod
849
+ def _reorder_cache(past_key_values, beam_idx):
850
+ reordered_past = ()
851
+ for layer_past in past_key_values:
852
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
853
+ return reordered_past
854
+
855
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
856
+ prompt = ""
857
+ for record in history:
858
+ prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
859
+ prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
860
+ return tokenizer([prompt], return_tensors="pt")
861
+
862
+ @torch.no_grad()
863
+ def chat(
864
+ self,
865
+ tokenizer,
866
+ query: str,
867
+ history: List[Tuple[str, str]] = [],
868
+ streamer: Optional[BaseStreamer] = None,
869
+ max_new_tokens: int = 1024,
870
+ do_sample: bool = True,
871
+ temperature: float = 0.8,
872
+ top_p: float = 0.8,
873
+ **kwargs,
874
+ ):
875
+ inputs = self.build_inputs(tokenizer, query, history)
876
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
877
+ outputs = self.generate(
878
+ **inputs,
879
+ streamer=streamer,
880
+ max_new_tokens=max_new_tokens,
881
+ do_sample=do_sample,
882
+ temperature=temperature,
883
+ top_p=top_p,
884
+ **kwargs,
885
+ )
886
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
887
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
888
+ response = response.split("<eoa>")[0]
889
+ history = history + [(query, response)]
890
+ return response, history
891
+
892
+ @torch.no_grad()
893
+ def stream_chat(
894
+ self,
895
+ tokenizer,
896
+ query: str,
897
+ history: List[Tuple[str, str]] = [],
898
+ max_new_tokens: int = 1024,
899
+ do_sample: bool = True,
900
+ temperature: float = 0.8,
901
+ top_p: float = 0.8,
902
+ **kwargs,
903
+ ):
904
+ """
905
+ Return a generator in format: (response, history)
906
+ Eg.
907
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
908
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
909
+ """
910
+
911
+ response_queue = queue.Queue(maxsize=20)
912
+
913
+ class ChatStreamer(BaseStreamer):
914
+ def __init__(self, tokenizer) -> None:
915
+ super().__init__()
916
+ self.tokenizer = tokenizer
917
+ self.queue = response_queue
918
+ self.query = query
919
+ self.history = history
920
+ self.response = ""
921
+ self.received_inputs = False
922
+ self.queue.put((self.response, history + [(self.query, self.response)]))
923
+
924
+ def put(self, value):
925
+ if len(value.shape) > 1 and value.shape[0] > 1:
926
+ raise ValueError("ChatStreamer only supports batch size 1")
927
+ elif len(value.shape) > 1:
928
+ value = value[0]
929
+
930
+ if not self.received_inputs:
931
+ # The first received value is input_ids, ignore here
932
+ self.received_inputs = True
933
+ return
934
+
935
+ token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
936
+ if token.strip() != "<eoa>":
937
+ self.response = self.response + token
938
+ history = self.history + [(self.query, self.response)]
939
+ self.queue.put((self.response, history))
940
+
941
+ def end(self):
942
+ self.queue.put(None)
943
+
944
+ def stream_producer():
945
+ return self.chat(
946
+ tokenizer=tokenizer,
947
+ query=query,
948
+ streamer=ChatStreamer(tokenizer=tokenizer),
949
+ history=history,
950
+ max_new_tokens=max_new_tokens,
951
+ do_sample=do_sample,
952
+ temperature=temperature,
953
+ top_p=top_p,
954
+ **kwargs,
955
+ )
956
+
957
+ def consumer():
958
+ producer = threading.Thread(target=stream_producer)
959
+ producer.start()
960
+ while True:
961
+ res = response_queue.get()
962
+ if res is None:
963
+ return
964
+ yield res
965
+
966
+ return consumer()
967
+
968
+
969
+ @add_start_docstrings(
970
+ """
971
+ The InternLM Model transformer with a sequence classification head on top (linear layer).
972
+ [`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
973
+ (e.g. GPT-2) do.
974
+ Since it does classification on the last token, it requires to know the position of the last token. If a
975
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
976
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
977
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
978
+ each row of the batch).
979
+ """,
980
+ INTERNLM_START_DOCSTRING,
981
+ )
982
+ class InternLMForSequenceClassification(InternLMPreTrainedModel):
983
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
984
+
985
+ def __init__(self, config):
986
+ super().__init__(config)
987
+ self.num_labels = config.num_labels
988
+ self.model = InternLMModel(config)
989
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
990
+
991
+ # Initialize weights and apply final processing
992
+ self.post_init()
993
+
994
+ def get_input_embeddings(self):
995
+ return self.model.embed_tokens
996
+
997
+ def set_input_embeddings(self, value):
998
+ self.model.embed_tokens = value
999
+
1000
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
1001
+ def forward(
1002
+ self,
1003
+ input_ids: torch.LongTensor = None,
1004
+ attention_mask: Optional[torch.Tensor] = None,
1005
+ position_ids: Optional[torch.LongTensor] = None,
1006
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1007
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1008
+ labels: Optional[torch.LongTensor] = None,
1009
+ use_cache: Optional[bool] = None,
1010
+ output_attentions: Optional[bool] = None,
1011
+ output_hidden_states: Optional[bool] = None,
1012
+ return_dict: Optional[bool] = None,
1013
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1014
+ r"""
1015
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1016
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1017
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1018
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1019
+ """
1020
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1021
+
1022
+ transformer_outputs = self.model(
1023
+ input_ids,
1024
+ attention_mask=attention_mask,
1025
+ position_ids=position_ids,
1026
+ past_key_values=past_key_values,
1027
+ inputs_embeds=inputs_embeds,
1028
+ use_cache=use_cache,
1029
+ output_attentions=output_attentions,
1030
+ output_hidden_states=output_hidden_states,
1031
+ return_dict=return_dict,
1032
+ )
1033
+ hidden_states = transformer_outputs[0]
1034
+ logits = self.score(hidden_states)
1035
+
1036
+ if input_ids is not None:
1037
+ batch_size = input_ids.shape[0]
1038
+ else:
1039
+ batch_size = inputs_embeds.shape[0]
1040
+
1041
+ if self.config.pad_token_id is None and batch_size != 1:
1042
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1043
+ if self.config.pad_token_id is None:
1044
+ sequence_lengths = -1
1045
+ else:
1046
+ if input_ids is not None:
1047
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1048
+ else:
1049
+ sequence_lengths = -1
1050
+
1051
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1052
+
1053
+ loss = None
1054
+ if labels is not None:
1055
+ labels = labels.to(logits.device)
1056
+ if self.config.problem_type is None:
1057
+ if self.num_labels == 1:
1058
+ self.config.problem_type = "regression"
1059
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1060
+ self.config.problem_type = "single_label_classification"
1061
+ else:
1062
+ self.config.problem_type = "multi_label_classification"
1063
+
1064
+ if self.config.problem_type == "regression":
1065
+ loss_fct = MSELoss()
1066
+ if self.num_labels == 1:
1067
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1068
+ else:
1069
+ loss = loss_fct(pooled_logits, labels)
1070
+ elif self.config.problem_type == "single_label_classification":
1071
+ loss_fct = CrossEntropyLoss()
1072
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1073
+ elif self.config.problem_type == "multi_label_classification":
1074
+ loss_fct = BCEWithLogitsLoss()
1075
+ loss = loss_fct(pooled_logits, labels)
1076
+ if not return_dict:
1077
+ output = (pooled_logits,) + transformer_outputs[1:]
1078
+ return ((loss,) + output) if loss is not None else output
1079
+
1080
+ return SequenceClassifierOutputWithPast(
1081
+ loss=loss,
1082
+ logits=pooled_logits,
1083
+ past_key_values=transformer_outputs.past_key_values,
1084
+ hidden_states=transformer_outputs.hidden_states,
1085
+ attentions=transformer_outputs.attentions,
1086
+ )
pytorch_model-00001-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0da2138b5347feaff3ae192faa19f72a62c346b4a2af4c27fa5b1a64e1f89d9f
3
+ size 1969370847
pytorch_model-00002-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:468486f521a59c5d4909835352b225d0a95c42adee7228f66b298c793b6bfe8b
3
+ size 1933844137
pytorch_model-00003-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21cd36f5e5de2688b1f89813c14d74fd4be9d2d707d0f6b7c58300bdaadf8a5b
3
+ size 1933844201
pytorch_model-00004-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ca08b014aa1a7ee84017bc1a711aa303ab55b5de45da5a6e93d3c0f969e9b3
3
+ size 1990458181
pytorch_model-00005-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bf12fb12cb956f187d20a99522dc8fc9c13ede5acc25402164b71ce89f6930b
3
+ size 1990458775
pytorch_model-00006-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc1cf408deca95f108520d4bc1518bfd44c22ac051bbb6ac9b4a1a236c27a308
3
+ size 1990458775
pytorch_model-00007-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4514f85b680278bff8700ba7c8a2d189edae3a22dd673f869533aac612c2be7
3
+ size 1990467305
pytorch_model-00008-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57a97684d4e825b93f358274a07bc40b30df5fe0490bba76547ecbb69053a30b
3
+ size 845153194
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14643904512
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00008-of-00008.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00008.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00008.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00008.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00008.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00008.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00008.bin",
13
+ "model.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00008.bin",
14
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00008.bin",
15
+ "model.layers.0.self_attn.o_proj.bias": "pytorch_model-00001-of-00008.bin",
16
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00008.bin",
17
+ "model.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00008.bin",
18
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00008.bin",
19
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00008.bin",
20
+ "model.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00008.bin",
21
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00008.bin",
22
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00008.bin",
23
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00008.bin",
24
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00008.bin",
25
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00008.bin",
26
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00008.bin",
27
+ "model.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00008.bin",
28
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00008.bin",
29
+ "model.layers.1.self_attn.o_proj.bias": "pytorch_model-00001-of-00008.bin",
30
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00008.bin",
31
+ "model.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00008.bin",
32
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00008.bin",
33
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00008.bin",
34
+ "model.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00008.bin",
35
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00008.bin",
36
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
37
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00003-of-00008.bin",
38
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00003-of-00008.bin",
39
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00003-of-00008.bin",
40
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
41
+ "model.layers.10.self_attn.k_proj.bias": "pytorch_model-00003-of-00008.bin",
42
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00003-of-00008.bin",
43
+ "model.layers.10.self_attn.o_proj.bias": "pytorch_model-00003-of-00008.bin",
44
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00003-of-00008.bin",
45
+ "model.layers.10.self_attn.q_proj.bias": "pytorch_model-00003-of-00008.bin",
46
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00003-of-00008.bin",
47
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
48
+ "model.layers.10.self_attn.v_proj.bias": "pytorch_model-00003-of-00008.bin",
49
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00003-of-00008.bin",
50
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
51
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00003-of-00008.bin",
52
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00003-of-00008.bin",
53
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00003-of-00008.bin",
54
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
55
+ "model.layers.11.self_attn.k_proj.bias": "pytorch_model-00003-of-00008.bin",
56
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00003-of-00008.bin",
57
+ "model.layers.11.self_attn.o_proj.bias": "pytorch_model-00003-of-00008.bin",
58
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00003-of-00008.bin",
59
+ "model.layers.11.self_attn.q_proj.bias": "pytorch_model-00003-of-00008.bin",
60
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00003-of-00008.bin",
61
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
62
+ "model.layers.11.self_attn.v_proj.bias": "pytorch_model-00003-of-00008.bin",
63
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00003-of-00008.bin",
64
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
65
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00004-of-00008.bin",
66
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00004-of-00008.bin",
67
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00004-of-00008.bin",
68
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
69
+ "model.layers.12.self_attn.k_proj.bias": "pytorch_model-00003-of-00008.bin",
70
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00003-of-00008.bin",
71
+ "model.layers.12.self_attn.o_proj.bias": "pytorch_model-00003-of-00008.bin",
72
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00003-of-00008.bin",
73
+ "model.layers.12.self_attn.q_proj.bias": "pytorch_model-00003-of-00008.bin",
74
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00003-of-00008.bin",
75
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
76
+ "model.layers.12.self_attn.v_proj.bias": "pytorch_model-00003-of-00008.bin",
77
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00003-of-00008.bin",
78
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
79
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00004-of-00008.bin",
80
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00004-of-00008.bin",
81
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00004-of-00008.bin",
82
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
83
+ "model.layers.13.self_attn.k_proj.bias": "pytorch_model-00004-of-00008.bin",
84
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00004-of-00008.bin",
85
+ "model.layers.13.self_attn.o_proj.bias": "pytorch_model-00004-of-00008.bin",
86
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00004-of-00008.bin",
87
+ "model.layers.13.self_attn.q_proj.bias": "pytorch_model-00004-of-00008.bin",
88
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00004-of-00008.bin",
89
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
90
+ "model.layers.13.self_attn.v_proj.bias": "pytorch_model-00004-of-00008.bin",
91
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00004-of-00008.bin",
92
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
93
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00004-of-00008.bin",
94
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00004-of-00008.bin",
95
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00004-of-00008.bin",
96
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
97
+ "model.layers.14.self_attn.k_proj.bias": "pytorch_model-00004-of-00008.bin",
98
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00004-of-00008.bin",
99
+ "model.layers.14.self_attn.o_proj.bias": "pytorch_model-00004-of-00008.bin",
100
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00004-of-00008.bin",
101
+ "model.layers.14.self_attn.q_proj.bias": "pytorch_model-00004-of-00008.bin",
102
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00004-of-00008.bin",
103
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
104
+ "model.layers.14.self_attn.v_proj.bias": "pytorch_model-00004-of-00008.bin",
105
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00004-of-00008.bin",
106
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
107
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00004-of-00008.bin",
108
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00004-of-00008.bin",
109
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00004-of-00008.bin",
110
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
111
+ "model.layers.15.self_attn.k_proj.bias": "pytorch_model-00004-of-00008.bin",
112
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00004-of-00008.bin",
113
+ "model.layers.15.self_attn.o_proj.bias": "pytorch_model-00004-of-00008.bin",
114
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00004-of-00008.bin",
115
+ "model.layers.15.self_attn.q_proj.bias": "pytorch_model-00004-of-00008.bin",
116
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00004-of-00008.bin",
117
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
118
+ "model.layers.15.self_attn.v_proj.bias": "pytorch_model-00004-of-00008.bin",
119
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00004-of-00008.bin",
120
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00004-of-00008.bin",
121
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00004-of-00008.bin",
122
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00004-of-00008.bin",
123
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00004-of-00008.bin",
124
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00004-of-00008.bin",
125
+ "model.layers.16.self_attn.k_proj.bias": "pytorch_model-00004-of-00008.bin",
126
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00004-of-00008.bin",
127
+ "model.layers.16.self_attn.o_proj.bias": "pytorch_model-00004-of-00008.bin",
128
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00004-of-00008.bin",
129
+ "model.layers.16.self_attn.q_proj.bias": "pytorch_model-00004-of-00008.bin",
130
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00004-of-00008.bin",
131
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00008.bin",
132
+ "model.layers.16.self_attn.v_proj.bias": "pytorch_model-00004-of-00008.bin",
133
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00004-of-00008.bin",
134
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
135
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00005-of-00008.bin",
136
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00005-of-00008.bin",
137
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00005-of-00008.bin",
138
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
139
+ "model.layers.17.self_attn.k_proj.bias": "pytorch_model-00004-of-00008.bin",
140
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00004-of-00008.bin",
141
+ "model.layers.17.self_attn.o_proj.bias": "pytorch_model-00005-of-00008.bin",
142
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00005-of-00008.bin",
143
+ "model.layers.17.self_attn.q_proj.bias": "pytorch_model-00004-of-00008.bin",
144
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00004-of-00008.bin",
145
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
146
+ "model.layers.17.self_attn.v_proj.bias": "pytorch_model-00004-of-00008.bin",
147
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00004-of-00008.bin",
148
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
149
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00005-of-00008.bin",
150
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00005-of-00008.bin",
151
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00005-of-00008.bin",
152
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
153
+ "model.layers.18.self_attn.k_proj.bias": "pytorch_model-00005-of-00008.bin",
154
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00005-of-00008.bin",
155
+ "model.layers.18.self_attn.o_proj.bias": "pytorch_model-00005-of-00008.bin",
156
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00005-of-00008.bin",
157
+ "model.layers.18.self_attn.q_proj.bias": "pytorch_model-00005-of-00008.bin",
158
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00005-of-00008.bin",
159
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
160
+ "model.layers.18.self_attn.v_proj.bias": "pytorch_model-00005-of-00008.bin",
161
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00005-of-00008.bin",
162
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
163
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00005-of-00008.bin",
164
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00005-of-00008.bin",
165
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00005-of-00008.bin",
166
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
167
+ "model.layers.19.self_attn.k_proj.bias": "pytorch_model-00005-of-00008.bin",
168
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00005-of-00008.bin",
169
+ "model.layers.19.self_attn.o_proj.bias": "pytorch_model-00005-of-00008.bin",
170
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00005-of-00008.bin",
171
+ "model.layers.19.self_attn.q_proj.bias": "pytorch_model-00005-of-00008.bin",
172
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00005-of-00008.bin",
173
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
174
+ "model.layers.19.self_attn.v_proj.bias": "pytorch_model-00005-of-00008.bin",
175
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00005-of-00008.bin",
176
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
177
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00008.bin",
178
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00008.bin",
179
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00002-of-00008.bin",
180
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
181
+ "model.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00008.bin",
182
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00008.bin",
183
+ "model.layers.2.self_attn.o_proj.bias": "pytorch_model-00001-of-00008.bin",
184
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00008.bin",
185
+ "model.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00008.bin",
186
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00008.bin",
187
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00008.bin",
188
+ "model.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00008.bin",
189
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00008.bin",
190
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
191
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00005-of-00008.bin",
192
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00005-of-00008.bin",
193
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00005-of-00008.bin",
194
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
195
+ "model.layers.20.self_attn.k_proj.bias": "pytorch_model-00005-of-00008.bin",
196
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00005-of-00008.bin",
197
+ "model.layers.20.self_attn.o_proj.bias": "pytorch_model-00005-of-00008.bin",
198
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00005-of-00008.bin",
199
+ "model.layers.20.self_attn.q_proj.bias": "pytorch_model-00005-of-00008.bin",
200
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00005-of-00008.bin",
201
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
202
+ "model.layers.20.self_attn.v_proj.bias": "pytorch_model-00005-of-00008.bin",
203
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00005-of-00008.bin",
204
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00005-of-00008.bin",
205
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00005-of-00008.bin",
206
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00005-of-00008.bin",
207
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00005-of-00008.bin",
208
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00005-of-00008.bin",
209
+ "model.layers.21.self_attn.k_proj.bias": "pytorch_model-00005-of-00008.bin",
210
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00005-of-00008.bin",
211
+ "model.layers.21.self_attn.o_proj.bias": "pytorch_model-00005-of-00008.bin",
212
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00005-of-00008.bin",
213
+ "model.layers.21.self_attn.q_proj.bias": "pytorch_model-00005-of-00008.bin",
214
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00005-of-00008.bin",
215
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00008.bin",
216
+ "model.layers.21.self_attn.v_proj.bias": "pytorch_model-00005-of-00008.bin",
217
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00005-of-00008.bin",
218
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
219
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00006-of-00008.bin",
220
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00006-of-00008.bin",
221
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00006-of-00008.bin",
222
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
223
+ "model.layers.22.self_attn.k_proj.bias": "pytorch_model-00005-of-00008.bin",
224
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00005-of-00008.bin",
225
+ "model.layers.22.self_attn.o_proj.bias": "pytorch_model-00006-of-00008.bin",
226
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00006-of-00008.bin",
227
+ "model.layers.22.self_attn.q_proj.bias": "pytorch_model-00005-of-00008.bin",
228
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00005-of-00008.bin",
229
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
230
+ "model.layers.22.self_attn.v_proj.bias": "pytorch_model-00006-of-00008.bin",
231
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00006-of-00008.bin",
232
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
233
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00006-of-00008.bin",
234
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00006-of-00008.bin",
235
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00006-of-00008.bin",
236
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
237
+ "model.layers.23.self_attn.k_proj.bias": "pytorch_model-00006-of-00008.bin",
238
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00006-of-00008.bin",
239
+ "model.layers.23.self_attn.o_proj.bias": "pytorch_model-00006-of-00008.bin",
240
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00006-of-00008.bin",
241
+ "model.layers.23.self_attn.q_proj.bias": "pytorch_model-00006-of-00008.bin",
242
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00006-of-00008.bin",
243
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
244
+ "model.layers.23.self_attn.v_proj.bias": "pytorch_model-00006-of-00008.bin",
245
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00006-of-00008.bin",
246
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
247
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00006-of-00008.bin",
248
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00006-of-00008.bin",
249
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00006-of-00008.bin",
250
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
251
+ "model.layers.24.self_attn.k_proj.bias": "pytorch_model-00006-of-00008.bin",
252
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00006-of-00008.bin",
253
+ "model.layers.24.self_attn.o_proj.bias": "pytorch_model-00006-of-00008.bin",
254
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00006-of-00008.bin",
255
+ "model.layers.24.self_attn.q_proj.bias": "pytorch_model-00006-of-00008.bin",
256
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00006-of-00008.bin",
257
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
258
+ "model.layers.24.self_attn.v_proj.bias": "pytorch_model-00006-of-00008.bin",
259
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00006-of-00008.bin",
260
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
261
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00006-of-00008.bin",
262
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00006-of-00008.bin",
263
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00006-of-00008.bin",
264
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
265
+ "model.layers.25.self_attn.k_proj.bias": "pytorch_model-00006-of-00008.bin",
266
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00006-of-00008.bin",
267
+ "model.layers.25.self_attn.o_proj.bias": "pytorch_model-00006-of-00008.bin",
268
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00006-of-00008.bin",
269
+ "model.layers.25.self_attn.q_proj.bias": "pytorch_model-00006-of-00008.bin",
270
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00006-of-00008.bin",
271
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
272
+ "model.layers.25.self_attn.v_proj.bias": "pytorch_model-00006-of-00008.bin",
273
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00006-of-00008.bin",
274
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00006-of-00008.bin",
275
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00006-of-00008.bin",
276
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00006-of-00008.bin",
277
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00006-of-00008.bin",
278
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00006-of-00008.bin",
279
+ "model.layers.26.self_attn.k_proj.bias": "pytorch_model-00006-of-00008.bin",
280
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00006-of-00008.bin",
281
+ "model.layers.26.self_attn.o_proj.bias": "pytorch_model-00006-of-00008.bin",
282
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00006-of-00008.bin",
283
+ "model.layers.26.self_attn.q_proj.bias": "pytorch_model-00006-of-00008.bin",
284
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00006-of-00008.bin",
285
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00008.bin",
286
+ "model.layers.26.self_attn.v_proj.bias": "pytorch_model-00006-of-00008.bin",
287
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00006-of-00008.bin",
288
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00007-of-00008.bin",
289
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00007-of-00008.bin",
290
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00007-of-00008.bin",
291
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00007-of-00008.bin",
292
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00007-of-00008.bin",
293
+ "model.layers.27.self_attn.k_proj.bias": "pytorch_model-00007-of-00008.bin",
294
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00007-of-00008.bin",
295
+ "model.layers.27.self_attn.o_proj.bias": "pytorch_model-00007-of-00008.bin",
296
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00007-of-00008.bin",
297
+ "model.layers.27.self_attn.q_proj.bias": "pytorch_model-00006-of-00008.bin",
298
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00006-of-00008.bin",
299
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00008.bin",
300
+ "model.layers.27.self_attn.v_proj.bias": "pytorch_model-00007-of-00008.bin",
301
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00007-of-00008.bin",
302
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00007-of-00008.bin",
303
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00007-of-00008.bin",
304
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00007-of-00008.bin",
305
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00007-of-00008.bin",
306
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00007-of-00008.bin",
307
+ "model.layers.28.self_attn.k_proj.bias": "pytorch_model-00007-of-00008.bin",
308
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00007-of-00008.bin",
309
+ "model.layers.28.self_attn.o_proj.bias": "pytorch_model-00007-of-00008.bin",
310
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00007-of-00008.bin",
311
+ "model.layers.28.self_attn.q_proj.bias": "pytorch_model-00007-of-00008.bin",
312
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00007-of-00008.bin",
313
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00008.bin",
314
+ "model.layers.28.self_attn.v_proj.bias": "pytorch_model-00007-of-00008.bin",
315
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00007-of-00008.bin",
316
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00007-of-00008.bin",
317
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00007-of-00008.bin",
318
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00007-of-00008.bin",
319
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00007-of-00008.bin",
320
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00007-of-00008.bin",
321
+ "model.layers.29.self_attn.k_proj.bias": "pytorch_model-00007-of-00008.bin",
322
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00007-of-00008.bin",
323
+ "model.layers.29.self_attn.o_proj.bias": "pytorch_model-00007-of-00008.bin",
324
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00007-of-00008.bin",
325
+ "model.layers.29.self_attn.q_proj.bias": "pytorch_model-00007-of-00008.bin",
326
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00007-of-00008.bin",
327
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00008.bin",
328
+ "model.layers.29.self_attn.v_proj.bias": "pytorch_model-00007-of-00008.bin",
329
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00007-of-00008.bin",
330
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
331
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00008.bin",
332
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00002-of-00008.bin",
333
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00002-of-00008.bin",
334
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
335
+ "model.layers.3.self_attn.k_proj.bias": "pytorch_model-00002-of-00008.bin",
336
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00008.bin",
337
+ "model.layers.3.self_attn.o_proj.bias": "pytorch_model-00002-of-00008.bin",
338
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00008.bin",
339
+ "model.layers.3.self_attn.q_proj.bias": "pytorch_model-00002-of-00008.bin",
340
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00008.bin",
341
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
342
+ "model.layers.3.self_attn.v_proj.bias": "pytorch_model-00002-of-00008.bin",
343
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00008.bin",
344
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00007-of-00008.bin",
345
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00007-of-00008.bin",
346
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00007-of-00008.bin",
347
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00007-of-00008.bin",
348
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00007-of-00008.bin",
349
+ "model.layers.30.self_attn.k_proj.bias": "pytorch_model-00007-of-00008.bin",
350
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00007-of-00008.bin",
351
+ "model.layers.30.self_attn.o_proj.bias": "pytorch_model-00007-of-00008.bin",
352
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00007-of-00008.bin",
353
+ "model.layers.30.self_attn.q_proj.bias": "pytorch_model-00007-of-00008.bin",
354
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00007-of-00008.bin",
355
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00008.bin",
356
+ "model.layers.30.self_attn.v_proj.bias": "pytorch_model-00007-of-00008.bin",
357
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00007-of-00008.bin",
358
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00007-of-00008.bin",
359
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00007-of-00008.bin",
360
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00007-of-00008.bin",
361
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00007-of-00008.bin",
362
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00007-of-00008.bin",
363
+ "model.layers.31.self_attn.k_proj.bias": "pytorch_model-00007-of-00008.bin",
364
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00007-of-00008.bin",
365
+ "model.layers.31.self_attn.o_proj.bias": "pytorch_model-00007-of-00008.bin",
366
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00007-of-00008.bin",
367
+ "model.layers.31.self_attn.q_proj.bias": "pytorch_model-00007-of-00008.bin",
368
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00007-of-00008.bin",
369
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00008.bin",
370
+ "model.layers.31.self_attn.v_proj.bias": "pytorch_model-00007-of-00008.bin",
371
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00007-of-00008.bin",
372
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
373
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00008.bin",
374
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00002-of-00008.bin",
375
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00002-of-00008.bin",
376
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
377
+ "model.layers.4.self_attn.k_proj.bias": "pytorch_model-00002-of-00008.bin",
378
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00008.bin",
379
+ "model.layers.4.self_attn.o_proj.bias": "pytorch_model-00002-of-00008.bin",
380
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00008.bin",
381
+ "model.layers.4.self_attn.q_proj.bias": "pytorch_model-00002-of-00008.bin",
382
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00008.bin",
383
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
384
+ "model.layers.4.self_attn.v_proj.bias": "pytorch_model-00002-of-00008.bin",
385
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00008.bin",
386
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
387
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00008.bin",
388
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00002-of-00008.bin",
389
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00008.bin",
390
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
391
+ "model.layers.5.self_attn.k_proj.bias": "pytorch_model-00002-of-00008.bin",
392
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00008.bin",
393
+ "model.layers.5.self_attn.o_proj.bias": "pytorch_model-00002-of-00008.bin",
394
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00008.bin",
395
+ "model.layers.5.self_attn.q_proj.bias": "pytorch_model-00002-of-00008.bin",
396
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00008.bin",
397
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
398
+ "model.layers.5.self_attn.v_proj.bias": "pytorch_model-00002-of-00008.bin",
399
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00008.bin",
400
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00008.bin",
401
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00008.bin",
402
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00008.bin",
403
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00008.bin",
404
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00008.bin",
405
+ "model.layers.6.self_attn.k_proj.bias": "pytorch_model-00002-of-00008.bin",
406
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00008.bin",
407
+ "model.layers.6.self_attn.o_proj.bias": "pytorch_model-00002-of-00008.bin",
408
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00008.bin",
409
+ "model.layers.6.self_attn.q_proj.bias": "pytorch_model-00002-of-00008.bin",
410
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00008.bin",
411
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
412
+ "model.layers.6.self_attn.v_proj.bias": "pytorch_model-00002-of-00008.bin",
413
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00008.bin",
414
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
415
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00008.bin",
416
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00008.bin",
417
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00003-of-00008.bin",
418
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
419
+ "model.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00008.bin",
420
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00008.bin",
421
+ "model.layers.7.self_attn.o_proj.bias": "pytorch_model-00002-of-00008.bin",
422
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00008.bin",
423
+ "model.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00008.bin",
424
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00008.bin",
425
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00008.bin",
426
+ "model.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00008.bin",
427
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00008.bin",
428
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
429
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00003-of-00008.bin",
430
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00003-of-00008.bin",
431
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00003-of-00008.bin",
432
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
433
+ "model.layers.8.self_attn.k_proj.bias": "pytorch_model-00003-of-00008.bin",
434
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00003-of-00008.bin",
435
+ "model.layers.8.self_attn.o_proj.bias": "pytorch_model-00003-of-00008.bin",
436
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00008.bin",
437
+ "model.layers.8.self_attn.q_proj.bias": "pytorch_model-00003-of-00008.bin",
438
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00003-of-00008.bin",
439
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
440
+ "model.layers.8.self_attn.v_proj.bias": "pytorch_model-00003-of-00008.bin",
441
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00003-of-00008.bin",
442
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00003-of-00008.bin",
443
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00003-of-00008.bin",
444
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00003-of-00008.bin",
445
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00003-of-00008.bin",
446
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00003-of-00008.bin",
447
+ "model.layers.9.self_attn.k_proj.bias": "pytorch_model-00003-of-00008.bin",
448
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00003-of-00008.bin",
449
+ "model.layers.9.self_attn.o_proj.bias": "pytorch_model-00003-of-00008.bin",
450
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00003-of-00008.bin",
451
+ "model.layers.9.self_attn.q_proj.bias": "pytorch_model-00003-of-00008.bin",
452
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00003-of-00008.bin",
453
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00008.bin",
454
+ "model.layers.9.self_attn.v_proj.bias": "pytorch_model-00003-of-00008.bin",
455
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00003-of-00008.bin",
456
+ "model.norm.weight": "pytorch_model-00007-of-00008.bin"
457
+ }
458
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for IntermLM."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {}
37
+
38
+
39
+ class InternLMTokenizer(PreTrainedTokenizer):
40
+ """
41
+ Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
42
+
43
+ Args:
44
+ vocab_file (`str`):
45
+ Path to the vocabulary file.
46
+ """
47
+
48
+ vocab_files_names = VOCAB_FILES_NAMES
49
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
50
+ model_input_names = ["input_ids", "attention_mask"]
51
+ _auto_class = "AutoTokenizer"
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_file,
56
+ unk_token="<unk>",
57
+ bos_token="<s>",
58
+ eos_token="</s>",
59
+ pad_token="</s>",
60
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
61
+ add_bos_token=True,
62
+ add_eos_token=False,
63
+ decode_with_prefix_space=False,
64
+ clean_up_tokenization_spaces=False,
65
+ **kwargs,
66
+ ):
67
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
68
+ self.vocab_file = vocab_file
69
+ self.add_bos_token = add_bos_token
70
+ self.add_eos_token = add_eos_token
71
+ self.decode_with_prefix_space = decode_with_prefix_space
72
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
73
+ self.sp_model.Load(vocab_file)
74
+ self._no_prefix_space_tokens = None
75
+ super().__init__(
76
+ bos_token=bos_token,
77
+ eos_token=eos_token,
78
+ unk_token=unk_token,
79
+ pad_token=pad_token,
80
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
81
+ **kwargs,
82
+ )
83
+
84
+ """ Initialization"""
85
+
86
+ @property
87
+ def no_prefix_space_tokens(self):
88
+ if self._no_prefix_space_tokens is None:
89
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
90
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
91
+ return self._no_prefix_space_tokens
92
+
93
+ @property
94
+ def vocab_size(self):
95
+ """Returns vocab size"""
96
+ return self.sp_model.get_piece_size()
97
+
98
+ @property
99
+ def bos_token_id(self) -> Optional[int]:
100
+ return self.sp_model.bos_id()
101
+
102
+ @property
103
+ def eos_token_id(self) -> Optional[int]:
104
+ return self.sp_model.eos_id()
105
+
106
+ def get_vocab(self):
107
+ """Returns vocab as a dict"""
108
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def _tokenize(self, text):
113
+ """Returns a tokenized string."""
114
+ return self.sp_model.encode(text, out_type=str)
115
+
116
+ def _convert_token_to_id(self, token):
117
+ """Converts a token (str) in an id using the vocab."""
118
+ return self.sp_model.piece_to_id(token)
119
+
120
+ def _convert_id_to_token(self, index):
121
+ """Converts an index (integer) in a token (str) using the vocab."""
122
+ token = self.sp_model.IdToPiece(index)
123
+ return token
124
+
125
+ def _maybe_add_prefix_space(self, tokens, decoded):
126
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
127
+ return " " + decoded
128
+ else:
129
+ return decoded
130
+
131
+ def convert_tokens_to_string(self, tokens):
132
+ """Converts a sequence of tokens (string) in a single string."""
133
+ current_sub_tokens = []
134
+ out_string = ""
135
+ prev_is_special = False
136
+ for token in tokens:
137
+ # make sure that special tokens are not decoded using sentencepiece model
138
+ if token in self.all_special_tokens:
139
+ if not prev_is_special:
140
+ out_string += " "
141
+ out_string += self.sp_model.decode(current_sub_tokens) + token
142
+ prev_is_special = True
143
+ current_sub_tokens = []
144
+ else:
145
+ current_sub_tokens.append(token)
146
+ prev_is_special = False
147
+ out_string += self.sp_model.decode(current_sub_tokens)
148
+ out_string = self.clean_up_tokenization(out_string)
149
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
150
+ return out_string[1:]
151
+
152
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
153
+ """
154
+ Save the vocabulary and special tokens file to a directory.
155
+
156
+ Args:
157
+ save_directory (`str`):
158
+ The directory in which to save the vocabulary.
159
+
160
+ Returns:
161
+ `Tuple(str)`: Paths to the files saved.
162
+ """
163
+ if not os.path.isdir(save_directory):
164
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
165
+ return
166
+ out_vocab_file = os.path.join(
167
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
168
+ )
169
+
170
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
171
+ copyfile(self.vocab_file, out_vocab_file)
172
+ elif not os.path.isfile(self.vocab_file):
173
+ with open(out_vocab_file, "wb") as fi:
174
+ content_spiece_model = self.sp_model.serialized_model_proto()
175
+ fi.write(content_spiece_model)
176
+
177
+ return (out_vocab_file,)
178
+
179
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
180
+ if self.add_bos_token:
181
+ bos_token_ids = [self.bos_token_id]
182
+ else:
183
+ bos_token_ids = []
184
+
185
+ output = bos_token_ids + token_ids_0
186
+
187
+ if token_ids_1 is not None:
188
+ output = output + token_ids_1
189
+
190
+ if self.add_eos_token:
191
+ output = output + [self.eos_token_id]
192
+
193
+ return output
194
+
195
+ def get_special_tokens_mask(
196
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
197
+ ) -> List[int]:
198
+ """
199
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
200
+ special tokens using the tokenizer `prepare_for_model` method.
201
+
202
+ Args:
203
+ token_ids_0 (`List[int]`):
204
+ List of IDs.
205
+ token_ids_1 (`List[int]`, *optional*):
206
+ Optional second list of IDs for sequence pairs.
207
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
208
+ Whether or not the token list is already formatted with special tokens for the model.
209
+
210
+ Returns:
211
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
212
+ """
213
+ if already_has_special_tokens:
214
+ return super().get_special_tokens_mask(
215
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
216
+ )
217
+
218
+ if token_ids_1 is None:
219
+ return [1] + ([0] * len(token_ids_0)) + [1]
220
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
221
+
222
+ def create_token_type_ids_from_sequences(
223
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
224
+ ) -> List[int]:
225
+ """
226
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
227
+ use of token type ids, therefore a list of zeros is returned.
228
+
229
+ Args:
230
+ token_ids_0 (`List[int]`):
231
+ List of IDs.
232
+ token_ids_1 (`List[int]`, *optional*):
233
+ Optional second list of IDs for sequence pairs.
234
+
235
+ Returns:
236
+ `List[int]`: List of zeros.
237
+ """
238
+ eos = [self.eos_token_id]
239
+
240
+ if token_ids_1 is None:
241
+ return len(token_ids_0 + eos) * [0]
242
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aab622d98c98677a1a51f969e25765154487bf3e85c7819db105db2fcacba83f
3
+ size 1658691
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_internlm.InternLMTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": "<s>",
9
+ "clean_up_tokenization_spaces": false,
10
+ "eos_token": "</s>",
11
+ "model_max_length": 1000000000000000019884624838656,
12
+ "pad_token": "</s>",
13
+ "tokenizer_class": "InternLMTokenizer",
14
+ "unk_token": "<unk>"
15
+ }