huwenxing commited on
Commit
1c290a9
1 Parent(s): daf8de1

first update

Browse files
README.md ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ ---
5
+
6
+ **InternLM**
7
+
8
+ <div align="center">
9
+
10
+ <img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/>
11
+ <div>&nbsp;</div>
12
+ <div align="center">
13
+ <b><font size="5">InternLM</font></b>
14
+ <sup>
15
+ <a href="https://internlm.intern-ai.org.cn/">
16
+ <i><font size="4">HOT</font></i>
17
+ </a>
18
+ </sup>
19
+ <div>&nbsp;</div>
20
+ </div>
21
+
22
+ [![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
23
+
24
+ [💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
25
+
26
+ </div>
27
+
28
+
29
+ ## Introduction
30
+
31
+ The Shanghai Artificial Intelligence Laboratory, in collaboration with SenseTime Technology, the Chinese University of Hong Kong, and Fudan University, has officially released the 20 billion parameter pretrained model, InternLM-20B. InternLM-20B was pre-trained on over **2.3T** Tokens containing high-quality English, Chinese, and code data. Additionally, the Chat version has undergone SFT and RLHF training, enabling it to better and more securely meet users' needs.
32
+
33
+ In terms of model structure, InternLM-20B opted for a deeper architecture, with a depth set at 60 layers. This surpasses the conventional 7B and 13B models that utilize 32 or 40 layers. When parameters are limited, increasing the number of layers can enhance the model's overall capability. Furthermore, compared to InternLM-7B, the pre-training data used for InternLM-20B underwent higher quality cleansing and was supplemented with data rich in knowledge and designed for reinforcing understanding and reasoning capabilities. As a result, it exhibits significant improvements in understanding, reasoning, mathematical, and programming abilities—all of which test the technical proficiency of language models. Overall, InternLM-20B features the following characteristics:
34
+ - Outstanding overall performance
35
+ - Strong utility invocation capability
36
+ - Supports a 16k context length (Through infererence extrapolation)
37
+ - Better value alignment.
38
+
39
+ ## Performance Evaluation
40
+ On the 5 capability dimensions proposed by OpenCompass, InternLM-20B has achieved excellent results (the bolded scores represent the best performances within the 13B-33B parameter range).
41
+
42
+ | Capability | Llama-13B | Llama2-13B | Baichuan2-13B | InternLM-20B | Llama-33B | Llama-65B | Llama2-70B |
43
+ |----------|-----------|------------|---------------|--------------|-----------|-----------|------------|
44
+ | Language | 42.5 | 47 | 47.5 | **55** | 44.6 | 47.1 | 51.6 |
45
+ | Knowledge | 58.2 | 58.3 | 48.9 | 60.1 | **64** | 66 | 67.7 |
46
+ | Understanding | 45.5 | 50.9 | 58.1 | **67.3** | 50.6 | 54.2 | 60.8 |
47
+ | Reasoning | 42.7 | 43.6 | 44.2 | **54.9** | 46.4 | 49.8 | 55 |
48
+ | Examination | 37.3 | 45.2 | 51.8 | **62.5** | 47.4 | 49.7 | 57.3 |
49
+ | Overall | 43.8 | 47.3 | 49.4 | **59.2** | 48.9 | 51.9 | 57.4 |
50
+
51
+ The table below compares the performance of mainstream open-source models on some influential and typical datasets.
52
+
53
+ | | Benchmarks | Llama-13B | Llama2-13B | Baichuan2-13B | InternLM-20B | Llama-33B | Llama-65B | Llama2-70B |
54
+ |------|------------------|-----------|------------|---------------|--------------|-----------|-----------|------------|
55
+ | Examination | MMLU | 47.73 | 54.99 | 59.55 | **62.05** | 58.73 | 63.71 | 69.75 |
56
+ | | C-Eval (val) | 31.83 | 41.4 | **59.01** | 58.8 | 37.47 | 40.36 | 50.13 |
57
+ | | AGI-Eval | 22.03 | 30.93 | 37.37 | **44.58** | 33.53 | 33.92 | 40.02 |
58
+ | Knowledge | BoolQ | 78.75 | 82.42 | 67 | **87.46** | 84.43 | 86.61 | 87.74 |
59
+ | | TriviaQA | 52.47 | 59.36 | 46.61 | 57.26 | **66.24** | 69.79 | 70.71 |
60
+ | | NaturalQuestions | 20.17 | 24.85 | 16.32 | 25.15 | **30.89** | 33.41 | 34.16 |
61
+ | Understanding | CMRC | 9.26 | 31.59 | 29.85 | **68.78** | 14.17 | 34.73 | 43.74 |
62
+ | | CSL | 55 | 58.75 | 63.12 | **65.62** | 57.5 | 59.38 | 60 |
63
+ | | RACE (middle) | 53.41 | 63.02 | 68.94 | **86.35** | 64.55 | 72.35 | 81.55 |
64
+ | | RACE (high) | 47.63 | 58.86 | 67.18 | **83.28** | 62.61 | 68.01 | 79.93 |
65
+ | | XSum | 20.37 | 23.37 | 25.23 | **35.54** | 20.55 | 19.91 | 25.38 |
66
+ | Reasoning | WinoGrande | 64.64 | 64.01 | 67.32 | **69.38** | 66.85 | 69.38 | 69.77 |
67
+ | | BBH | 37.93 | 45.62 | 48.98 | **52.51** | 49.98 | 58.38 | 64.91 |
68
+ | | GSM8K | 20.32 | 29.57 | **52.62** | **52.62** | 42.3 | 54.44 | 63.31 |
69
+ | | PIQA | 79.71 | 79.76 | 78.07 | 80.25 | **81.34** | 82.15 | 82.54 |
70
+ | Programming | HumanEval | 14.02 | 18.9 | 17.07 | **25.61** | 17.68 | 18.9 | 26.22 |
71
+ | | MBPP | 20.6 | 26.8 | 30.8 | **35.6** | 28.4 | 33.6 | 39.6 |
72
+
73
+ Overall, InternLM-20B comprehensively outperforms open-source models in the 13B parameter range in terms of overall capabilities, and on inference evaluation sets, it approaches or even surpasses the performance of Llama-65B.
74
+
75
+ ## Import from Transformers
76
+ To load the InternLM 20B model using Transformers, use the following code:
77
+ ```python
78
+ import torch
79
+ from transformers import AutoTokenizer, AutoModelForCausalLM
80
+ tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-20b", trust_remote_code=True)
81
+ # Set `torch_dtype=torch.bfloat16` to load model in bfloat16, otherwise it will be loaded as float32 and cause OOM Error.
82
+ model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-20b", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
83
+ model = model.eval()
84
+ output, history = model.chat(tokenizer, "Hello! Today is sunny, it is time to go out")
85
+ print(output)
86
+ # Hello! Today is sunny, and it sounds like a great day to go out an enjoy the weather. What would you like to do?
87
+ ```
88
+
89
+ The responses can be streamed using `stream_chat`:
90
+
91
+ ```python
92
+ import torch
93
+ from transformers import AutoModelForCausalLM, AutoTokenizer
94
+
95
+ model_path = "internlm/internlm-chat-20b"
96
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
97
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
98
+
99
+ model = model.eval()
100
+ length = 0
101
+ for response, history in model.stream_chat(tokenizer, "Hello", history=[]):
102
+ print(response[length:], flush=True, end="")
103
+ length = len(response)
104
+ ```
105
+
106
+ **Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
107
+
108
+
109
+ ## Open Source License
110
+
111
+ The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <internlm@pjlab.org.cn>.
112
+
113
+
114
+ ## 简介
115
+ 上海人工智能实验室与商汤科技联合香港中文大学和复旦大学正式推出书生·浦语200亿参数模型版本 InternLM-20B ,InternLM-20B 在超过 **2.3T** Tokens 包含高质量英文、中文和代码的数据上进行预训练,其中 Chat 版本还经过了 SFT 和 RLHF 训练,使其能够更好、更安全地满足用户的需求。
116
+
117
+ InternLM 20B 在模型结构上选择了深结构,层数设定为60层,超过常规7B和13B模型所使用的32层或者40层。在参数受限的情况下,提高层数有利于提高模型的综合能力。此外,相较于InternLM-7B,InternLM-20B使用的预训练数据经过了更高质量的清洗,并补充了高知识密度和用于强化理解与推理能力的训练数据。因此,它在理解能力、推理能力、数学能力、编程能力等考验语言模型技术水平的方面都得到了显著提升。总体而言,InternLM-20B具有以下的特点:
118
+ - 优异的综合性能
119
+ - 很强的工具调用功能
120
+ - 支持16k语境长度(通过推理时外推)
121
+ - 更好的价值对齐
122
+
123
+ ## 性能评测
124
+ 在OpenCompass提出的5个能力维度上,InternLM-20B都取得很好的效果(粗体为13B-33B这个量级范围内,各项最佳成绩)
125
+
126
+ | 能力维度 | Llama-13B | Llama2-13B | Baichuan2-13B | InternLM-20B | Llama-33B | Llama-65B | Llama2-70B |
127
+ |----------|-----------|------------|---------------|--------------|-----------|-----------|------------|
128
+ | 语言 | 42.5 | 47 | 47.5 | **55** | 44.6 | 47.1 | 51.6 |
129
+ | 知识 | 58.2 | 58.3 | 48.9 | 60.1 | **64** | 66 | 67.7 |
130
+ | 理解 | 45.5 | 50.9 | 58.1 | **67.3** | 50.6 | 54.2 | 60.8 |
131
+ | 推理 | 42.7 | 43.6 | 44.2 | **54.9** | 46.4 | 49.8 | 55 |
132
+ | 学科 | 37.3 | 45.2 | 51.8 | **62.5** | 47.4 | 49.7 | 57.3 |
133
+ | 总平均 | 43.8 | 47.3 | 49.4 | **59.2** | 48.9 | 51.9 | 57.4 |
134
+
135
+ 下表展示了在多个经典数据集上 InternLM 20B 与各个主流开源模型的表现
136
+
137
+ | | 评测集 | Llama-13B | Llama2-13B | Baichuan2-13B | InternLM-20B | Llama-33B | Llama-65B | Llama2-70B |
138
+ |------|------------------|-----------|------------|---------------|--------------|-----------|-----------|------------|
139
+ | 学科 | MMLU | 47.73 | 54.99 | 59.55 | **62.05** | 58.73 | 63.71 | 69.75 |
140
+ | | C-Eval (val) | 31.83 | 41.4 | **59.01** | 58.8 | 37.47 | 40.36 | 50.13 |
141
+ | | AGI-Eval | 22.03 | 30.93 | 37.37 | **44.58** | 33.53 | 33.92 | 40.02 |
142
+ | 知识 | BoolQ | 78.75 | 82.42 | 67 | **87.46** | 84.43 | 86.61 | 87.74 |
143
+ | | TriviaQA | 52.47 | 59.36 | 46.61 | 57.26 | **66.24** | 69.79 | 70.71 |
144
+ | | NaturalQuestions | 20.17 | 24.85 | 16.32 | 25.15 | **30.89** | 33.41 | 34.16 |
145
+ | 理解 | CMRC | 9.26 | 31.59 | 29.85 | **68.78** | 14.17 | 34.73 | 43.74 |
146
+ | | CSL | 55 | 58.75 | 63.12 | **65.62** | 57.5 | 59.38 | 60 |
147
+ | | RACE (middle) | 53.41 | 63.02 | 68.94 | **86.35** | 64.55 | 72.35 | 81.55 |
148
+ | | RACE (high) | 47.63 | 58.86 | 67.18 | **83.28** | 62.61 | 68.01 | 79.93 |
149
+ | | XSum | 20.37 | 23.37 | 25.23 | **35.54** | 20.55 | 19.91 | 25.38 |
150
+ | 推理 | WinoGrande | 64.64 | 64.01 | 67.32 | **69.38** | 66.85 | 69.38 | 69.77 |
151
+ | | BBH | 37.93 | 45.62 | 48.98 | **52.51** | 49.98 | 58.38 | 64.91 |
152
+ | | GSM8K | 20.32 | 29.57 | **52.62** | **52.62** | 42.3 | 54.44 | 63.31 |
153
+ | | PIQA | 79.71 | 79.76 | 78.07 | 80.25 | **81.34** | 82.15 | 82.54 |
154
+ | 编程 | HumanEval | 14.02 | 18.9 | 17.07 | **25.61** | 17.68 | 18.9 | 26.22 |
155
+ | | MBPP | 20.6 | 26.8 | 30.8 | **35.6** | 28.4 | 33.6 | 39.6 |
156
+
157
+ 总体而言,InternLM-20B 在综合能力上全面领先于13B量级的开源模型,同时在推理评测集上能够接近甚至超越Llama-65B的性能。
158
+
159
+ ## 通过 Transformers 加载
160
+ 通过以下的代码加载 InternLM 20B 模型
161
+ ```python
162
+ import torch
163
+ from transformers import AutoTokenizer, AutoModelForCausalLM
164
+ tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-20b", trust_remote_code=True)
165
+ # `torch_dtype=torch.bfloat16` 可以令模型以 bfloat16 精度加载,否则 transformers 会将模型加载为 float32,导致显存不足
166
+ model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-20b", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
167
+ model = model.eval()
168
+ output, history = model.chat(tokenizer, "你好呀!今天天气真好")
169
+ print(output)
170
+ # 你好!是的,今天的天气非常晴朗,非常适合户外活动。
171
+ ```
172
+
173
+ 如果想进行流式生成,则可以使用 stream_chat 接口:
174
+
175
+ ```python
176
+ import torch
177
+ from transformers import AutoModelForCausalLM, AutoTokenizer
178
+
179
+ model_path = "internlm/internlm-chat-20b"
180
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dype=torch.bfloat16, trust_remote_code=True)
181
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
182
+
183
+ model = model.eval()
184
+ length = 0
185
+ for response, history in model.stream_chat(tokenizer, "你好", history=[]):
186
+ print(response[length:], flush=True, end="")
187
+ length = len(response)
188
+ ```
189
+
190
+ **局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
191
+
192
+ ## 开源许可证
193
+
194
+ 本仓库的代码依照 Apache-2.0 协议开源。模型权重对学术研究完全开放,也可申请免费的商业使用授权([申请表](https://wj.qq.com/s2/12725412/f7c1/))。其他问题与合作请联系 <internlm@pjlab.org.cn>。
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLMForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internlm.InternLMConfig",
7
+ "AutoModel": "modeling_internlm.InternLMForCausalLM",
8
+ "AutoModelForCausalLM": "modeling_internlm.InternLMForCausalLM"
9
+ },
10
+ "bias": false,
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 5120,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13824,
17
+ "max_position_embeddings": 4096,
18
+ "model_type": "internlm",
19
+ "num_attention_heads": 40,
20
+ "num_hidden_layers": 60,
21
+ "num_key_value_heads": 40,
22
+ "pad_token_id": 2,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.33.1",
30
+ "use_cache": true,
31
+ "vocab_size": 103168,
32
+ "rotary": {
33
+ "base": 10000,
34
+ "type": "dynamic"
35
+ }
36
+ }
configuration_internlm.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ InternLM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class InternLMConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
+ an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`InternLMModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
53
+ The non-linear activation function (function or string) in the decoder.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
56
+ just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 0.02):
58
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
60
+ The epsilon used by the rms normalization layers.
61
+ use_cache (`bool`, *optional*, defaults to `True`):
62
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
63
+ relevant if `config.is_decoder=True`.
64
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
65
+ Whether to tie weight embeddings
66
+ Example:
67
+
68
+ ```python
69
+ >>> from transformers import InternLMModel, InternLMConfig
70
+
71
+ >>> # Initializing a InternLM internlm-7b style configuration
72
+ >>> configuration = InternLMConfig()
73
+
74
+ >>> # Initializing a model from the internlm-7b style configuration
75
+ >>> model = InternLMModel(configuration)
76
+
77
+ >>> # Accessing the model configuration
78
+ >>> configuration = model.config
79
+ ```"""
80
+ model_type = "internlm"
81
+ _auto_class = "AutoConfig"
82
+
83
+ def __init__( # pylint: disable=W0102
84
+ self,
85
+ vocab_size=103168,
86
+ hidden_size=4096,
87
+ intermediate_size=11008,
88
+ num_hidden_layers=32,
89
+ num_attention_heads=32,
90
+ hidden_act="silu",
91
+ max_position_embeddings=2048,
92
+ initializer_range=0.02,
93
+ rms_norm_eps=1e-6,
94
+ use_cache=True,
95
+ pad_token_id=0,
96
+ bos_token_id=1,
97
+ eos_token_id=2,
98
+ tie_word_embeddings=False,
99
+ bias=True,
100
+ rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
101
+ **kwargs,
102
+ ):
103
+ self.vocab_size = vocab_size
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.hidden_size = hidden_size
106
+ self.intermediate_size = intermediate_size
107
+ self.num_hidden_layers = num_hidden_layers
108
+ self.num_attention_heads = num_attention_heads
109
+ self.hidden_act = hidden_act
110
+ self.initializer_range = initializer_range
111
+ self.rms_norm_eps = rms_norm_eps
112
+ self.use_cache = use_cache
113
+ self.bias = bias
114
+ self.rotary = rotary
115
+ super().__init__(
116
+ pad_token_id=pad_token_id,
117
+ bos_token_id=bos_token_id,
118
+ eos_token_id=eos_token_id,
119
+ tie_word_embeddings=tie_word_embeddings,
120
+ **kwargs,
121
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.33.1"
6
+ }
modeling_internlm.py ADDED
@@ -0,0 +1,1086 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch InternLM model."""
21
+ import math
22
+ import queue
23
+ import threading
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+ from transformers.activations import ACT2FN
31
+ from transformers.generation.streamers import BaseStreamer
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ )
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import (
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+
45
+ from .configuration_internlm import InternLMConfig
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "InternLMConfig"
50
+
51
+
52
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
53
+ def _make_causal_mask(
54
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
55
+ ):
56
+ """
57
+ Make causal mask used for bi-directional self-attention.
58
+ """
59
+ bsz, tgt_len = input_ids_shape
60
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
61
+ mask_cond = torch.arange(mask.size(-1), device=device)
62
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
63
+ mask = mask.to(dtype)
64
+
65
+ if past_key_values_length > 0:
66
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
68
+
69
+
70
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
71
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
+ """
73
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
+ """
75
+ bsz, src_len = mask.size()
76
+ tgt_len = tgt_len if tgt_len is not None else src_len
77
+
78
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
+
80
+ inverted_mask = 1.0 - expanded_mask
81
+
82
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
83
+
84
+
85
+ class InternLMRMSNorm(nn.Module):
86
+ """RMSNorm implemention."""
87
+
88
+ def __init__(self, hidden_size, eps=1e-6):
89
+ """
90
+ InternLMRMSNorm is equivalent to T5LayerNorm
91
+ """
92
+ super().__init__()
93
+ self.weight = nn.Parameter(torch.ones(hidden_size))
94
+ self.variance_epsilon = eps
95
+
96
+ def forward(self, hidden_states):
97
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
98
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
99
+
100
+ # convert into half-precision if necessary
101
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
102
+ hidden_states = hidden_states.to(self.weight.dtype)
103
+
104
+ return self.weight * hidden_states
105
+
106
+
107
+ class InternLMRotaryEmbedding(torch.nn.Module):
108
+ """Implement InternLM's rotary embedding.
109
+
110
+ Args:
111
+ dim (int): Characteristic dimension of each self-attentional head.
112
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
113
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
114
+ device (Any, optional): Running device. Defaults to None.
115
+ """
116
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
117
+ super().__init__()
118
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
119
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
120
+
121
+ # Build here to make `torch.jit.trace` work.
122
+ self.max_seq_len_cached = max_position_embeddings
123
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
124
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
125
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
126
+ emb = torch.cat((freqs, freqs), dim=-1)
127
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
128
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
129
+
130
+ def forward(self, x, seq_len=None):
131
+ # x: [bs, num_attention_heads, seq_len, head_size]
132
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
133
+ if seq_len > self.max_seq_len_cached:
134
+ self.max_seq_len_cached = seq_len
135
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
136
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
137
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
138
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
139
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
140
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
141
+ return (
142
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
143
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
144
+ )
145
+
146
+
147
+ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
148
+ """Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
149
+
150
+ Args:
151
+ dim (int): Characteristic dimension of each self-attentional head.
152
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
153
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
154
+ device (Any, optional): Running device. Defaults to None.
155
+ scaling_factor (float, optional): NTK method extrapolation coefficient. Defaults to 1.0.
156
+ """
157
+
158
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
159
+ super().__init__()
160
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
161
+ self.register_buffer("inv_freq", inv_freq)
162
+ self.dim = dim
163
+ self.base = base
164
+ self.scaling_factor = scaling_factor
165
+
166
+ # Build here to make `torch.jit.trace` work.
167
+ self.max_position_embeddings = max_position_embeddings
168
+ self.max_seq_len_cached = max_position_embeddings
169
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
170
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
171
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
172
+ emb = torch.cat((freqs, freqs), dim=-1)
173
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
174
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
175
+
176
+ def _update_cached(self, x, seq_len=None):
177
+ self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
178
+ if seq_len > self.max_position_embeddings:
179
+ base = self.base * (
180
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
181
+ ) ** (self.dim / (self.dim - 2))
182
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
183
+ else:
184
+ inv_freq = self.inv_freq
185
+ t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
186
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
187
+ emb = torch.cat((freqs, freqs), dim=-1)
188
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
189
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
190
+
191
+ def forward(self, x, seq_len=None):
192
+ # x: [bs, num_attention_heads, seq_len, head_size]
193
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
194
+ if seq_len <= self.max_position_embeddings:
195
+ # Reset the tables if the sequence length has changed,
196
+ if self.max_seq_len_cached > self.max_position_embeddings:
197
+ self._update_cached(x, seq_len)
198
+ else:
199
+ self._update_cached(x, seq_len)
200
+
201
+ return (
202
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
203
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
204
+ )
205
+
206
+
207
+ def rotate_half(x):
208
+ """Rotates half the hidden dims of the input."""
209
+ x1 = x[..., : x.shape[-1] // 2]
210
+ x2 = x[..., x.shape[-1] // 2 :]
211
+ return torch.cat((-x2, x1), dim=-1)
212
+
213
+
214
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
215
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
216
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
217
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
218
+ cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
219
+ sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
220
+ if q.size(2) == 1:
221
+ q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
222
+ else:
223
+ q_embed = (q * cos) + (rotate_half(q) * sin)
224
+
225
+ if k.size(2) == 1:
226
+ k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
227
+ else:
228
+ k_embed = (k * cos) + (rotate_half(k) * sin)
229
+
230
+ return q_embed, k_embed
231
+
232
+
233
+ class InternLMMLP(nn.Module):
234
+ def __init__(
235
+ self,
236
+ hidden_size: int,
237
+ intermediate_size: int,
238
+ hidden_act: str,
239
+ ):
240
+ super().__init__()
241
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
242
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
243
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
244
+ self.act_fn = ACT2FN[hidden_act]
245
+
246
+ def forward(self, x):
247
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
248
+
249
+
250
+ class InternLMAttention(nn.Module):
251
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
252
+
253
+ def __init__(self, config: InternLMConfig):
254
+ super().__init__()
255
+ self.config = config
256
+ self.hidden_size = config.hidden_size
257
+ self.num_heads = config.num_attention_heads
258
+ self.head_dim = self.hidden_size // self.num_heads
259
+ self.max_position_embeddings = config.max_position_embeddings
260
+
261
+ if (self.head_dim * self.num_heads) != self.hidden_size:
262
+ raise ValueError(
263
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
264
+ f" and `num_heads`: {self.num_heads})."
265
+ )
266
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
267
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
268
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
269
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
270
+ self.rotary_emb = self._init_rope()
271
+
272
+ def _init_rope(self):
273
+ if self.config.rotary["type"] == "origin":
274
+ self.rotary_emb = InternLMRotaryEmbedding(
275
+ self.head_dim,
276
+ max_position_embeddings=self.max_position_embeddings,
277
+ base=self.config.rotary["base"],
278
+ )
279
+ elif self.config.rotary["type"] == "dynamic":
280
+ self.rotary_emb = InternLMDynamicNTKScalingRotaryEmbedding(
281
+ self.head_dim,
282
+ max_position_embeddings=self.max_position_embeddings,
283
+ base=self.config.rotary["base"],
284
+ scaling_factor=self.config.rotary.get("scaling_factor", 1.0),
285
+ )
286
+ else:
287
+ raise ValueError("Currently we only support rotary embedding's type being one of ('origin', 'dynamic').")
288
+ return self.rotary_emb
289
+
290
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
291
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
292
+
293
+ def forward(
294
+ self,
295
+ hidden_states: torch.Tensor,
296
+ attention_mask: Optional[torch.Tensor] = None,
297
+ position_ids: Optional[torch.LongTensor] = None,
298
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
299
+ output_attentions: bool = False,
300
+ use_cache: bool = False,
301
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
302
+ bsz, q_len, _ = hidden_states.size()
303
+
304
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
305
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
306
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
307
+
308
+ if past_key_value is not None:
309
+ # reuse k, v, self_attention
310
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
311
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
312
+
313
+ # print(use_cache)
314
+ past_key_value = (key_states, value_states) if use_cache else None
315
+
316
+ kv_seq_len = key_states.shape[-2]
317
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
318
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
319
+
320
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
321
+
322
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
323
+ raise ValueError(
324
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
325
+ f" {attn_weights.size()}"
326
+ )
327
+
328
+ if attention_mask is not None:
329
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
330
+ raise ValueError(
331
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
332
+ )
333
+ attn_weights = attn_weights + attention_mask
334
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
335
+
336
+ # upcast attention to fp32
337
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
338
+ attn_output = torch.matmul(attn_weights, value_states)
339
+
340
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
341
+ raise ValueError(
342
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
343
+ f" {attn_output.size()}"
344
+ )
345
+
346
+ attn_output = attn_output.transpose(1, 2)
347
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
348
+
349
+ attn_output = self.o_proj(attn_output)
350
+
351
+ if not output_attentions:
352
+ attn_weights = None
353
+
354
+ return attn_output, attn_weights, past_key_value
355
+
356
+
357
+ class InternLMDecoderLayer(nn.Module):
358
+ def __init__(self, config: InternLMConfig):
359
+ super().__init__()
360
+ self.hidden_size = config.hidden_size
361
+ self.self_attn = InternLMAttention(config=config)
362
+ self.mlp = InternLMMLP(
363
+ hidden_size=self.hidden_size,
364
+ intermediate_size=config.intermediate_size,
365
+ hidden_act=config.hidden_act,
366
+ )
367
+ self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+ self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
369
+
370
+ def forward(
371
+ self,
372
+ hidden_states: torch.Tensor,
373
+ attention_mask: Optional[torch.Tensor] = None,
374
+ position_ids: Optional[torch.LongTensor] = None,
375
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
376
+ output_attentions: Optional[bool] = False,
377
+ use_cache: Optional[bool] = False,
378
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
379
+ """
380
+ Args:
381
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
382
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
383
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
384
+ output_attentions (`bool`, *optional*):
385
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
386
+ returned tensors for more detail.
387
+ use_cache (`bool`, *optional*):
388
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
389
+ (see `past_key_values`).
390
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
391
+ """
392
+
393
+ residual = hidden_states
394
+
395
+ hidden_states = self.input_layernorm(hidden_states)
396
+
397
+ # Self Attention
398
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
399
+ hidden_states=hidden_states,
400
+ attention_mask=attention_mask,
401
+ position_ids=position_ids,
402
+ past_key_value=past_key_value,
403
+ output_attentions=output_attentions,
404
+ use_cache=use_cache,
405
+ )
406
+ hidden_states = residual + hidden_states
407
+
408
+ # Fully Connected
409
+ residual = hidden_states
410
+ hidden_states = self.post_attention_layernorm(hidden_states)
411
+ hidden_states = self.mlp(hidden_states)
412
+ hidden_states = residual + hidden_states
413
+
414
+ outputs = (hidden_states,)
415
+
416
+ if output_attentions:
417
+ outputs += (self_attn_weights,)
418
+
419
+ if use_cache:
420
+ outputs += (present_key_value,)
421
+
422
+ return outputs
423
+
424
+
425
+ INTERNLM_START_DOCSTRING = r"""
426
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
427
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
428
+ etc.)
429
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
430
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
431
+ and behavior.
432
+ Parameters:
433
+ config ([`InternLMConfig`]):
434
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
435
+ load the weights associated with the model, only the configuration. Check out the
436
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
437
+ """
438
+
439
+
440
+ @add_start_docstrings(
441
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
442
+ INTERNLM_START_DOCSTRING,
443
+ )
444
+ class InternLMPreTrainedModel(PreTrainedModel):
445
+ config_class = InternLMConfig
446
+ base_model_prefix = "model"
447
+ supports_gradient_checkpointing = True
448
+ _no_split_modules = ["InternLMDecoderLayer"]
449
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
450
+
451
+ def _init_weights(self, module):
452
+ std = self.config.initializer_range
453
+ if isinstance(module, nn.Linear):
454
+ module.weight.data.normal_(mean=0.0, std=std)
455
+ if module.bias is not None:
456
+ module.bias.data.zero_()
457
+ elif isinstance(module, nn.Embedding):
458
+ module.weight.data.normal_(mean=0.0, std=std)
459
+ if module.padding_idx is not None:
460
+ module.weight.data[module.padding_idx].zero_()
461
+
462
+ def _set_gradient_checkpointing(self, module, value=False):
463
+ if isinstance(module, InternLMModel):
464
+ module.gradient_checkpointing = value
465
+
466
+
467
+ INTERNLM_INPUTS_DOCSTRING = r"""
468
+ Args:
469
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
470
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
471
+ it.
472
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
473
+ [`PreTrainedTokenizer.__call__`] for details.
474
+ [What are input IDs?](../glossary#input-ids)
475
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
476
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
477
+ - 1 for tokens that are **not masked**,
478
+ - 0 for tokens that are **masked**.
479
+ [What are attention masks?](../glossary#attention-mask)
480
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
481
+ [`PreTrainedTokenizer.__call__`] for details.
482
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
483
+ `past_key_values`).
484
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
485
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
486
+ information on the default strategy.
487
+ - 1 indicates the head is **not masked**,
488
+ - 0 indicates the head is **masked**.
489
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
490
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
491
+ config.n_positions - 1]`.
492
+ [What are position IDs?](../glossary#position-ids)
493
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
494
+ when `config.use_cache=True`):
495
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
496
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
497
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
498
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
499
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
500
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
501
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
502
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
503
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
504
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
505
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
506
+ model's internal embedding lookup matrix.
507
+ use_cache (`bool`, *optional*):
508
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
509
+ `past_key_values`).
510
+ output_attentions (`bool`, *optional*):
511
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
512
+ tensors for more detail.
513
+ output_hidden_states (`bool`, *optional*):
514
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
515
+ more detail.
516
+ return_dict (`bool`, *optional*):
517
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
518
+ """
519
+
520
+
521
+ @add_start_docstrings(
522
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
523
+ INTERNLM_START_DOCSTRING,
524
+ )
525
+ class InternLMModel(InternLMPreTrainedModel):
526
+ """
527
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
528
+ Args:
529
+ config: InternLMConfig
530
+ """
531
+
532
+ _auto_class = "AutoModel"
533
+
534
+ def __init__(self, config: InternLMConfig):
535
+ super().__init__(config)
536
+ self.padding_idx = config.pad_token_id
537
+ self.vocab_size = config.vocab_size
538
+
539
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
540
+ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
541
+ self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
542
+
543
+ self.gradient_checkpointing = False
544
+ # Initialize weights and apply final processing
545
+ self.post_init()
546
+
547
+ def get_input_embeddings(self):
548
+ return self.embed_tokens
549
+
550
+ def set_input_embeddings(self, value):
551
+ self.embed_tokens = value
552
+
553
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
554
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
555
+ # create causal mask
556
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
557
+ combined_attention_mask = None
558
+ if input_shape[-1] > 1:
559
+ combined_attention_mask = _make_causal_mask(
560
+ input_shape,
561
+ inputs_embeds.dtype,
562
+ device=inputs_embeds.device,
563
+ past_key_values_length=past_key_values_length,
564
+ )
565
+
566
+ if attention_mask is not None:
567
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
568
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
569
+ inputs_embeds.device
570
+ )
571
+ combined_attention_mask = (
572
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
573
+ )
574
+
575
+ return combined_attention_mask
576
+
577
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
578
+ def forward(
579
+ self,
580
+ input_ids: torch.LongTensor = None,
581
+ attention_mask: Optional[torch.Tensor] = None,
582
+ position_ids: Optional[torch.LongTensor] = None,
583
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
584
+ inputs_embeds: Optional[torch.FloatTensor] = None,
585
+ use_cache: Optional[bool] = None,
586
+ output_attentions: Optional[bool] = None,
587
+ output_hidden_states: Optional[bool] = None,
588
+ return_dict: Optional[bool] = None,
589
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
590
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
591
+ output_hidden_states = (
592
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
593
+ )
594
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
595
+
596
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
597
+
598
+ # retrieve input_ids and inputs_embeds
599
+ if input_ids is not None and inputs_embeds is not None:
600
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
601
+ elif input_ids is not None:
602
+ batch_size, seq_length = input_ids.shape
603
+ elif inputs_embeds is not None:
604
+ batch_size, seq_length, _ = inputs_embeds.shape
605
+ else:
606
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
607
+
608
+ seq_length_with_past = seq_length
609
+ past_key_values_length = 0
610
+
611
+ if past_key_values is not None:
612
+ past_key_values_length = past_key_values[0][0].shape[2]
613
+ seq_length_with_past = seq_length_with_past + past_key_values_length
614
+
615
+ if position_ids is None:
616
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
617
+ position_ids = torch.arange(
618
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
619
+ )
620
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
621
+ else:
622
+ position_ids = position_ids.view(-1, seq_length).long()
623
+
624
+ if inputs_embeds is None:
625
+ inputs_embeds = self.embed_tokens(input_ids)
626
+ # embed positions
627
+ if attention_mask is None:
628
+ attention_mask = torch.ones(
629
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
630
+ )
631
+ attention_mask = self._prepare_decoder_attention_mask(
632
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
633
+ )
634
+
635
+ hidden_states = inputs_embeds
636
+
637
+ if self.gradient_checkpointing and self.training:
638
+ if use_cache:
639
+ logger.warning_once(
640
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
641
+ )
642
+ use_cache = False
643
+
644
+ # decoder layers
645
+ all_hidden_states = () if output_hidden_states else None
646
+ all_self_attns = () if output_attentions else None
647
+ next_decoder_cache = () if use_cache else None
648
+
649
+ for idx, decoder_layer in enumerate(self.layers):
650
+ if output_hidden_states:
651
+ all_hidden_states += (hidden_states,)
652
+
653
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
654
+
655
+ if self.gradient_checkpointing and self.training:
656
+
657
+ def create_custom_forward(module):
658
+ def custom_forward(*inputs):
659
+ # None for past_key_value
660
+ return module(*inputs, output_attentions, None)
661
+
662
+ return custom_forward
663
+
664
+ layer_outputs = torch.utils.checkpoint.checkpoint(
665
+ create_custom_forward(decoder_layer),
666
+ hidden_states,
667
+ attention_mask,
668
+ position_ids,
669
+ None,
670
+ )
671
+ else:
672
+ layer_outputs = decoder_layer(
673
+ hidden_states,
674
+ attention_mask=attention_mask,
675
+ position_ids=position_ids,
676
+ past_key_value=past_key_value,
677
+ output_attentions=output_attentions,
678
+ use_cache=use_cache,
679
+ )
680
+
681
+ hidden_states = layer_outputs[0]
682
+
683
+ if use_cache:
684
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
685
+
686
+ if output_attentions:
687
+ all_self_attns += (layer_outputs[1],)
688
+
689
+ hidden_states = self.norm(hidden_states)
690
+
691
+ # add hidden states from the last decoder layer
692
+ if output_hidden_states:
693
+ all_hidden_states += (hidden_states,)
694
+
695
+ next_cache = next_decoder_cache if use_cache else None
696
+ if not return_dict:
697
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
698
+ return BaseModelOutputWithPast(
699
+ last_hidden_state=hidden_states,
700
+ past_key_values=next_cache,
701
+ hidden_states=all_hidden_states,
702
+ attentions=all_self_attns,
703
+ )
704
+
705
+
706
+ class InternLMForCausalLM(InternLMPreTrainedModel):
707
+ _auto_class = "AutoModelForCausalLM"
708
+
709
+ def __init__(self, config):
710
+ super().__init__(config)
711
+ self.model = InternLMModel(config)
712
+
713
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
714
+
715
+ # Initialize weights and apply final processing
716
+ self.post_init()
717
+
718
+ def get_input_embeddings(self):
719
+ return self.model.embed_tokens
720
+
721
+ def set_input_embeddings(self, value):
722
+ self.model.embed_tokens = value
723
+
724
+ def get_output_embeddings(self):
725
+ return self.lm_head
726
+
727
+ def set_output_embeddings(self, new_embeddings):
728
+ self.lm_head = new_embeddings
729
+
730
+ def set_decoder(self, decoder):
731
+ self.model = decoder
732
+
733
+ def get_decoder(self):
734
+ return self.model
735
+
736
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
737
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
738
+ def forward(
739
+ self,
740
+ input_ids: torch.LongTensor = None,
741
+ attention_mask: Optional[torch.Tensor] = None,
742
+ position_ids: Optional[torch.LongTensor] = None,
743
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
744
+ inputs_embeds: Optional[torch.FloatTensor] = None,
745
+ labels: Optional[torch.LongTensor] = None,
746
+ use_cache: Optional[bool] = None,
747
+ output_attentions: Optional[bool] = None,
748
+ output_hidden_states: Optional[bool] = None,
749
+ return_dict: Optional[bool] = None,
750
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
751
+ r"""
752
+ Args:
753
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
754
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
755
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
756
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
757
+ Returns:
758
+ Example:
759
+ ```python
760
+ >>> from transformers import AutoTokenizer, InternLMForCausalLM
761
+ >>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
762
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
763
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
764
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
765
+ >>> # Generate
766
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
767
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
768
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
769
+ ```"""
770
+
771
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
772
+ output_hidden_states = (
773
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
774
+ )
775
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
776
+
777
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
778
+ outputs = self.model(
779
+ input_ids=input_ids,
780
+ attention_mask=attention_mask,
781
+ position_ids=position_ids,
782
+ past_key_values=past_key_values,
783
+ inputs_embeds=inputs_embeds,
784
+ use_cache=use_cache,
785
+ output_attentions=output_attentions,
786
+ output_hidden_states=output_hidden_states,
787
+ return_dict=return_dict,
788
+ )
789
+
790
+ hidden_states = outputs[0]
791
+ logits = self.lm_head(hidden_states)
792
+
793
+ loss = None
794
+ if labels is not None:
795
+ # Shift so that tokens < n predict n
796
+ shift_logits = logits[..., :-1, :].contiguous()
797
+ shift_labels = labels[..., 1:].contiguous()
798
+ # Flatten the tokens
799
+ loss_fct = CrossEntropyLoss()
800
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
801
+ shift_labels = shift_labels.view(-1)
802
+ # Enable model parallelism
803
+ shift_labels = shift_labels.to(shift_logits.device)
804
+ loss = loss_fct(shift_logits, shift_labels)
805
+
806
+ if not return_dict:
807
+ output = (logits,) + outputs[1:]
808
+ return (loss,) + output if loss is not None else output
809
+
810
+ return CausalLMOutputWithPast(
811
+ loss=loss,
812
+ logits=logits,
813
+ past_key_values=outputs.past_key_values,
814
+ hidden_states=outputs.hidden_states,
815
+ attentions=outputs.attentions,
816
+ )
817
+
818
+ def prepare_inputs_for_generation(
819
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
820
+ ):
821
+ if past_key_values:
822
+ input_ids = input_ids[:, -1:]
823
+
824
+ position_ids = kwargs.get("position_ids", None)
825
+ if attention_mask is not None and position_ids is None:
826
+ # create position_ids on the fly for batch generation
827
+ position_ids = attention_mask.long().cumsum(-1) - 1
828
+ position_ids.masked_fill_(attention_mask == 0, 1)
829
+ if past_key_values:
830
+ position_ids = position_ids[:, -1].unsqueeze(-1)
831
+
832
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
833
+ if inputs_embeds is not None and past_key_values is None:
834
+ model_inputs = {"inputs_embeds": inputs_embeds}
835
+ else:
836
+ model_inputs = {"input_ids": input_ids}
837
+
838
+ model_inputs.update(
839
+ {
840
+ "position_ids": position_ids,
841
+ "past_key_values": past_key_values,
842
+ "use_cache": kwargs.get("use_cache"),
843
+ "attention_mask": attention_mask,
844
+ }
845
+ )
846
+ return model_inputs
847
+
848
+ @staticmethod
849
+ def _reorder_cache(past_key_values, beam_idx):
850
+ reordered_past = ()
851
+ for layer_past in past_key_values:
852
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
853
+ return reordered_past
854
+
855
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
856
+ prompt = ""
857
+ for record in history:
858
+ prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
859
+ prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
860
+ return tokenizer([prompt], return_tensors="pt")
861
+
862
+ @torch.no_grad()
863
+ def chat(
864
+ self,
865
+ tokenizer,
866
+ query: str,
867
+ history: List[Tuple[str, str]] = [],
868
+ streamer: Optional[BaseStreamer] = None,
869
+ max_new_tokens: int = 1024,
870
+ do_sample: bool = True,
871
+ temperature: float = 0.8,
872
+ top_p: float = 0.8,
873
+ **kwargs,
874
+ ):
875
+ inputs = self.build_inputs(tokenizer, query, history)
876
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
877
+ outputs = self.generate(
878
+ **inputs,
879
+ streamer=streamer,
880
+ max_new_tokens=max_new_tokens,
881
+ do_sample=do_sample,
882
+ temperature=temperature,
883
+ top_p=top_p,
884
+ **kwargs,
885
+ )
886
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
887
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
888
+ response = response.split("<eoa>")[0]
889
+ history = history + [(query, response)]
890
+ return response, history
891
+
892
+ @torch.no_grad()
893
+ def stream_chat(
894
+ self,
895
+ tokenizer,
896
+ query: str,
897
+ history: List[Tuple[str, str]] = [],
898
+ max_new_tokens: int = 1024,
899
+ do_sample: bool = True,
900
+ temperature: float = 0.8,
901
+ top_p: float = 0.8,
902
+ **kwargs,
903
+ ):
904
+ """
905
+ Return a generator in format: (response, history)
906
+ Eg.
907
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
908
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
909
+ """
910
+
911
+ response_queue = queue.Queue(maxsize=20)
912
+
913
+ class ChatStreamer(BaseStreamer):
914
+ def __init__(self, tokenizer) -> None:
915
+ super().__init__()
916
+ self.tokenizer = tokenizer
917
+ self.queue = response_queue
918
+ self.query = query
919
+ self.history = history
920
+ self.response = ""
921
+ self.received_inputs = False
922
+ self.queue.put((self.response, history + [(self.query, self.response)]))
923
+
924
+ def put(self, value):
925
+ if len(value.shape) > 1 and value.shape[0] > 1:
926
+ raise ValueError("ChatStreamer only supports batch size 1")
927
+ elif len(value.shape) > 1:
928
+ value = value[0]
929
+
930
+ if not self.received_inputs:
931
+ # The first received value is input_ids, ignore here
932
+ self.received_inputs = True
933
+ return
934
+
935
+ token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
936
+ if token.strip() != "<eoa>":
937
+ self.response = self.response + token
938
+ history = self.history + [(self.query, self.response)]
939
+ self.queue.put((self.response, history))
940
+
941
+ def end(self):
942
+ self.queue.put(None)
943
+
944
+ def stream_producer():
945
+ return self.chat(
946
+ tokenizer=tokenizer,
947
+ query=query,
948
+ streamer=ChatStreamer(tokenizer=tokenizer),
949
+ history=history,
950
+ max_new_tokens=max_new_tokens,
951
+ do_sample=do_sample,
952
+ temperature=temperature,
953
+ top_p=top_p,
954
+ **kwargs,
955
+ )
956
+
957
+ def consumer():
958
+ producer = threading.Thread(target=stream_producer)
959
+ producer.start()
960
+ while True:
961
+ res = response_queue.get()
962
+ if res is None:
963
+ return
964
+ yield res
965
+
966
+ return consumer()
967
+
968
+
969
+ @add_start_docstrings(
970
+ """
971
+ The InternLM Model transformer with a sequence classification head on top (linear layer).
972
+ [`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
973
+ (e.g. GPT-2) do.
974
+ Since it does classification on the last token, it requires to know the position of the last token. If a
975
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
976
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
977
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
978
+ each row of the batch).
979
+ """,
980
+ INTERNLM_START_DOCSTRING,
981
+ )
982
+ class InternLMForSequenceClassification(InternLMPreTrainedModel):
983
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
984
+
985
+ def __init__(self, config):
986
+ super().__init__(config)
987
+ self.num_labels = config.num_labels
988
+ self.model = InternLMModel(config)
989
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
990
+
991
+ # Initialize weights and apply final processing
992
+ self.post_init()
993
+
994
+ def get_input_embeddings(self):
995
+ return self.model.embed_tokens
996
+
997
+ def set_input_embeddings(self, value):
998
+ self.model.embed_tokens = value
999
+
1000
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
1001
+ def forward(
1002
+ self,
1003
+ input_ids: torch.LongTensor = None,
1004
+ attention_mask: Optional[torch.Tensor] = None,
1005
+ position_ids: Optional[torch.LongTensor] = None,
1006
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1007
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1008
+ labels: Optional[torch.LongTensor] = None,
1009
+ use_cache: Optional[bool] = None,
1010
+ output_attentions: Optional[bool] = None,
1011
+ output_hidden_states: Optional[bool] = None,
1012
+ return_dict: Optional[bool] = None,
1013
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1014
+ r"""
1015
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1016
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1017
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1018
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1019
+ """
1020
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1021
+
1022
+ transformer_outputs = self.model(
1023
+ input_ids,
1024
+ attention_mask=attention_mask,
1025
+ position_ids=position_ids,
1026
+ past_key_values=past_key_values,
1027
+ inputs_embeds=inputs_embeds,
1028
+ use_cache=use_cache,
1029
+ output_attentions=output_attentions,
1030
+ output_hidden_states=output_hidden_states,
1031
+ return_dict=return_dict,
1032
+ )
1033
+ hidden_states = transformer_outputs[0]
1034
+ logits = self.score(hidden_states)
1035
+
1036
+ if input_ids is not None:
1037
+ batch_size = input_ids.shape[0]
1038
+ else:
1039
+ batch_size = inputs_embeds.shape[0]
1040
+
1041
+ if self.config.pad_token_id is None and batch_size != 1:
1042
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1043
+ if self.config.pad_token_id is None:
1044
+ sequence_lengths = -1
1045
+ else:
1046
+ if input_ids is not None:
1047
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1048
+ else:
1049
+ sequence_lengths = -1
1050
+
1051
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1052
+
1053
+ loss = None
1054
+ if labels is not None:
1055
+ labels = labels.to(logits.device)
1056
+ if self.config.problem_type is None:
1057
+ if self.num_labels == 1:
1058
+ self.config.problem_type = "regression"
1059
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1060
+ self.config.problem_type = "single_label_classification"
1061
+ else:
1062
+ self.config.problem_type = "multi_label_classification"
1063
+
1064
+ if self.config.problem_type == "regression":
1065
+ loss_fct = MSELoss()
1066
+ if self.num_labels == 1:
1067
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1068
+ else:
1069
+ loss = loss_fct(pooled_logits, labels)
1070
+ elif self.config.problem_type == "single_label_classification":
1071
+ loss_fct = CrossEntropyLoss()
1072
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1073
+ elif self.config.problem_type == "multi_label_classification":
1074
+ loss_fct = BCEWithLogitsLoss()
1075
+ loss = loss_fct(pooled_logits, labels)
1076
+ if not return_dict:
1077
+ output = (pooled_logits,) + transformer_outputs[1:]
1078
+ return ((loss,) + output) if loss is not None else output
1079
+
1080
+ return SequenceClassifierOutputWithPast(
1081
+ loss=loss,
1082
+ logits=pooled_logits,
1083
+ past_key_values=transformer_outputs.past_key_values,
1084
+ hidden_states=transformer_outputs.hidden_states,
1085
+ attentions=transformer_outputs.attentions,
1086
+ )
pytorch_model-00001-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeba743507872c45e7cf951d7996bce448d8deada841d055d2ac03948af0c2b7
3
+ size 9990647029
pytorch_model-00002-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a11c8737fce8d6be9a8f6eb0faa44016c94813aed1d50a757ca32abece4ed461
3
+ size 9956594199
pytorch_model-00003-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c64167ce104e9a576da50f89a398ac2124734621c45e12ea0addbac99ad87ac
3
+ size 9867486361
pytorch_model-00004-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40e22421695e3206bc85f0a4839641370bc8277ab689ff0e5d75e708d51f8691
3
+ size 9306483281
pytorch_model-00005-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:263f29c6331d8951fd454d4bbd2991d422bbcfb5b07d4acbb0e75aaf53b1a76c
3
+ size 1056441258
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 40177428480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00005-of-00005.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00005.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
242
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
243
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
244
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
245
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
246
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
247
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
248
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
249
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
250
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
251
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
252
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
253
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
254
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
255
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
256
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
257
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
258
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
259
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
260
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
261
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
262
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
263
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
264
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
265
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
266
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
267
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
268
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
269
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
270
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
271
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
272
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
273
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
274
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
275
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
276
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
277
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
278
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
279
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
280
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
281
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
282
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
283
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
284
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
285
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
286
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
287
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
288
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
289
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
290
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
291
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
292
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
293
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
294
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
295
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
296
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
297
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
298
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
299
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
300
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
301
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
302
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
303
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
304
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
305
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
306
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
307
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
308
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
309
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
310
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
311
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
312
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
313
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
314
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
315
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
316
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
317
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
318
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
319
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
320
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
321
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
322
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
323
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
324
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
325
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
326
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
327
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
328
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
329
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
330
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
331
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
332
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
333
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
334
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
335
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
336
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
337
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
338
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
339
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
340
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
341
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
342
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
343
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
344
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
345
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
346
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
347
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
348
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
349
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
350
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
351
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
352
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
353
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
354
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
355
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
356
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
357
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
358
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
359
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
360
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
361
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
362
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
363
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
364
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
365
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
366
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
367
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
368
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
369
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
370
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
371
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
372
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
373
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
374
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
375
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
376
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
377
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
378
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
379
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
380
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
381
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
382
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
383
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
384
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
385
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
386
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
387
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
388
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
389
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
390
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
391
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
392
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
393
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
394
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
395
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
396
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
397
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
398
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
399
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
400
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
401
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
402
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
403
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
404
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
405
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
406
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
407
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
408
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
409
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
410
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
411
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
412
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
413
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
414
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
415
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
416
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
417
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
418
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
419
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
420
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
421
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
422
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
423
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
424
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
425
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
426
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
427
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
428
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
429
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
430
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
431
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
432
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
433
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
434
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
435
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
436
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
437
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
438
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
439
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
440
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
441
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
442
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
443
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
444
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
445
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
446
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
447
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
448
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
449
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
450
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
451
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
452
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
453
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
454
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
455
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
456
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
457
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
458
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
459
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
460
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
461
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
462
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
463
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
464
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
465
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
466
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
467
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
468
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
469
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
470
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
471
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
472
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
473
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
474
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
475
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
476
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
477
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
478
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
479
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
480
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
481
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
482
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
483
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
484
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
485
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
486
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
487
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
488
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
489
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
490
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
491
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
492
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
493
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
494
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
495
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
496
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
497
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
498
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
499
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
500
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
501
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
502
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
503
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
504
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
505
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
506
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
507
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
508
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
509
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
510
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
511
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
512
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
513
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
514
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
515
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
516
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
517
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
518
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
519
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
520
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
521
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
522
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
523
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
524
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
525
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
526
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
527
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
528
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
529
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
530
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
531
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
532
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
533
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
534
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
535
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
536
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
537
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
538
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
539
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
540
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
541
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
542
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
543
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
544
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
545
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
546
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
547
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
548
+ "model.norm.weight": "pytorch_model-00004-of-00005.bin"
549
+ }
550
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for IntermLM."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {}
37
+
38
+
39
+ class InternLMTokenizer(PreTrainedTokenizer):
40
+ """
41
+ Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
42
+
43
+ Args:
44
+ vocab_file (`str`):
45
+ Path to the vocabulary file.
46
+ """
47
+
48
+ vocab_files_names = VOCAB_FILES_NAMES
49
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
50
+ model_input_names = ["input_ids", "attention_mask"]
51
+ _auto_class = "AutoTokenizer"
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_file,
56
+ unk_token="<unk>",
57
+ bos_token="<s>",
58
+ eos_token="</s>",
59
+ pad_token="</s>",
60
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
61
+ add_bos_token=True,
62
+ add_eos_token=False,
63
+ decode_with_prefix_space=False,
64
+ clean_up_tokenization_spaces=False,
65
+ **kwargs,
66
+ ):
67
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
68
+ self.vocab_file = vocab_file
69
+ self.add_bos_token = add_bos_token
70
+ self.add_eos_token = add_eos_token
71
+ self.decode_with_prefix_space = decode_with_prefix_space
72
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
73
+ self.sp_model.Load(vocab_file)
74
+ self._no_prefix_space_tokens = None
75
+ super().__init__(
76
+ bos_token=bos_token,
77
+ eos_token=eos_token,
78
+ unk_token=unk_token,
79
+ pad_token=pad_token,
80
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
81
+ **kwargs,
82
+ )
83
+
84
+ """ Initialization"""
85
+
86
+ @property
87
+ def no_prefix_space_tokens(self):
88
+ if self._no_prefix_space_tokens is None:
89
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
90
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
91
+ return self._no_prefix_space_tokens
92
+
93
+ @property
94
+ def vocab_size(self):
95
+ """Returns vocab size"""
96
+ return self.sp_model.get_piece_size()
97
+
98
+ @property
99
+ def bos_token_id(self) -> Optional[int]:
100
+ return self.sp_model.bos_id()
101
+
102
+ @property
103
+ def eos_token_id(self) -> Optional[int]:
104
+ return self.sp_model.eos_id()
105
+
106
+ def get_vocab(self):
107
+ """Returns vocab as a dict"""
108
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
109
+ vocab.update(self.added_tokens_encoder)
110
+ return vocab
111
+
112
+ def _tokenize(self, text):
113
+ """Returns a tokenized string."""
114
+ return self.sp_model.encode(text, out_type=str)
115
+
116
+ def _convert_token_to_id(self, token):
117
+ """Converts a token (str) in an id using the vocab."""
118
+ return self.sp_model.piece_to_id(token)
119
+
120
+ def _convert_id_to_token(self, index):
121
+ """Converts an index (integer) in a token (str) using the vocab."""
122
+ token = self.sp_model.IdToPiece(index)
123
+ return token
124
+
125
+ def _maybe_add_prefix_space(self, tokens, decoded):
126
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
127
+ return " " + decoded
128
+ else:
129
+ return decoded
130
+
131
+ def convert_tokens_to_string(self, tokens):
132
+ """Converts a sequence of tokens (string) in a single string."""
133
+ current_sub_tokens = []
134
+ out_string = ""
135
+ prev_is_special = False
136
+ for token in tokens:
137
+ # make sure that special tokens are not decoded using sentencepiece model
138
+ if token in self.all_special_tokens:
139
+ if not prev_is_special:
140
+ out_string += " "
141
+ out_string += self.sp_model.decode(current_sub_tokens) + token
142
+ prev_is_special = True
143
+ current_sub_tokens = []
144
+ else:
145
+ current_sub_tokens.append(token)
146
+ prev_is_special = False
147
+ out_string += self.sp_model.decode(current_sub_tokens)
148
+ out_string = self.clean_up_tokenization(out_string)
149
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
150
+ return out_string[1:]
151
+
152
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
153
+ """
154
+ Save the vocabulary and special tokens file to a directory.
155
+
156
+ Args:
157
+ save_directory (`str`):
158
+ The directory in which to save the vocabulary.
159
+
160
+ Returns:
161
+ `Tuple(str)`: Paths to the files saved.
162
+ """
163
+ if not os.path.isdir(save_directory):
164
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
165
+ return
166
+ out_vocab_file = os.path.join(
167
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
168
+ )
169
+
170
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
171
+ copyfile(self.vocab_file, out_vocab_file)
172
+ elif not os.path.isfile(self.vocab_file):
173
+ with open(out_vocab_file, "wb") as fi:
174
+ content_spiece_model = self.sp_model.serialized_model_proto()
175
+ fi.write(content_spiece_model)
176
+
177
+ return (out_vocab_file,)
178
+
179
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
180
+ if self.add_bos_token:
181
+ bos_token_ids = [self.bos_token_id]
182
+ else:
183
+ bos_token_ids = []
184
+
185
+ output = bos_token_ids + token_ids_0
186
+
187
+ if token_ids_1 is not None:
188
+ output = output + token_ids_1
189
+
190
+ if self.add_eos_token:
191
+ output = output + [self.eos_token_id]
192
+
193
+ return output
194
+
195
+ def get_special_tokens_mask(
196
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
197
+ ) -> List[int]:
198
+ """
199
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
200
+ special tokens using the tokenizer `prepare_for_model` method.
201
+
202
+ Args:
203
+ token_ids_0 (`List[int]`):
204
+ List of IDs.
205
+ token_ids_1 (`List[int]`, *optional*):
206
+ Optional second list of IDs for sequence pairs.
207
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
208
+ Whether or not the token list is already formatted with special tokens for the model.
209
+
210
+ Returns:
211
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
212
+ """
213
+ if already_has_special_tokens:
214
+ return super().get_special_tokens_mask(
215
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
216
+ )
217
+
218
+ if token_ids_1 is None:
219
+ return [1] + ([0] * len(token_ids_0)) + [1]
220
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
221
+
222
+ def create_token_type_ids_from_sequences(
223
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
224
+ ) -> List[int]:
225
+ """
226
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
227
+ use of token type ids, therefore a list of zeros is returned.
228
+
229
+ Args:
230
+ token_ids_0 (`List[int]`):
231
+ List of IDs.
232
+ token_ids_1 (`List[int]`, *optional*):
233
+ Optional second list of IDs for sequence pairs.
234
+
235
+ Returns:
236
+ `List[int]`: List of zeros.
237
+ """
238
+ eos = [self.eos_token_id]
239
+
240
+ if token_ids_1 is None:
241
+ return len(token_ids_0 + eos) * [0]
242
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aab622d98c98677a1a51f969e25765154487bf3e85c7819db105db2fcacba83f
3
+ size 1658691
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_internlm.InternLMTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": "<s>",
9
+ "clean_up_tokenization_spaces": false,
10
+ "eos_token": "</s>",
11
+ "model_max_length": 1000000000000000019884624838656,
12
+ "pad_token": "</s>",
13
+ "tokenizer_class": "InternLMTokenizer",
14
+ "unk_token": "<unk>"
15
+ }