vamsibanda's picture
Update README.md
5e0b4c7
|
raw
history blame
1.3 kB
---
pipeline_tag: sentence-similarity
language: en
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- onnx
---
# ONNX convert all-MiniLM-L6-v2
## Conversion of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
This is a [sentence-transformers](https://www.SBERT.net) ONNX model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model takes `last_hidden_state` and `pooler_output` whereas the sentence-transformers exported with default ONNX config only contains `last_hidden_state` as output.
## Usage (HuggingFace Optimum)
Using this model becomes easy when you have [optimum](https://github.com/huggingface/optimum) installed:
```
python -m pip install optimum
```
Then you can use the model like this:
```python
from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks
model = ORTModelForCustomTasks.from_pretrained("vamsibanda/sbert-all-MiniLM-L6-with-pooler")
tokenizer = AutoTokenizer.from_pretrained("vamsibanda/sbert-all-MiniLM-L6-with-pooler")
inputs = tokenizer("I love burritos!", return_tensors="pt")
pred = model(**inputs)
embedding = pred['pooler_output']
```