|
"""PyTorch Dbrx model.""" |
|
|
|
import math |
|
import warnings |
|
from copy import deepcopy |
|
from functools import partial |
|
from typing import Any, Callable, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_outputs import (MoeCausalLMOutputWithPast, |
|
MoeModelOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import is_flash_attn_2_available, logging |
|
|
|
from .configuration_dbrx import DbrxAttentionConfig, DbrxConfig, DbrxFFNConfig |
|
|
|
if is_flash_attn_2_available(): |
|
try: |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import pad_input |
|
from flash_attn.bert_padding import index_first_axis, unpad_input |
|
except: |
|
pass |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = 'DbrxConfig' |
|
|
|
|
|
|
|
|
|
|
|
|
|
class DbrxRotaryEmbedding(nn.Module): |
|
|
|
def __init__(self, |
|
dim: int, |
|
max_position_embeddings: int = 2048, |
|
base: float = 10000.0, |
|
scaling_factor: float = 1.0): |
|
super().__init__() |
|
self.scaling_factor = scaling_factor |
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base**( |
|
torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
self.max_seq_len_cached = max_position_embeddings |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, x: torch.Tensor, position_ids: torch.LongTensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand( |
|
position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance( |
|
device_type, str) and device_type != 'mps' else 'cpu' |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() |
|
@ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x: torch.Tensor) -> torch.Tensor: |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., :x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
cos: torch.Tensor, |
|
sin: torch.Tensor, |
|
unsqueeze_dim: int = 1) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos and |
|
sin so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos and sin have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos and sin broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). |
|
|
|
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to |
|
(batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, |
|
None, :, :].expand(batch, num_key_value_heads, |
|
n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, |
|
head_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_balancing_loss_func( |
|
gate_logits: torch.Tensor, |
|
num_experts: int, |
|
top_k: int, |
|
attention_mask: Optional[torch.Tensor], |
|
) -> torch.Tensor: |
|
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): |
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
shape [batch_size X sequence_length, num_experts]. |
|
num_experts (`int`): |
|
Number of experts. |
|
top_k (`int`): |
|
The number of experts each token is routed to. |
|
attention_mask (`torch.Tensor`, None): |
|
The attention_mask used in forward function |
|
shape [batch_size X sequence_length] if not None. |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
return torch.tensor(0.0) |
|
|
|
if isinstance(gate_logits, tuple): |
|
compute_device = gate_logits[0].device |
|
concatenated_gate_logits = torch.cat( |
|
[layer_gate.to(compute_device) for layer_gate in gate_logits], |
|
dim=0) |
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, |
|
dim=-1) |
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
if attention_mask is None: |
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
else: |
|
batch_size, sequence_length = attention_mask.shape |
|
num_hidden_layers = concatenated_gate_logits.shape[0] // ( |
|
batch_size * sequence_length) |
|
|
|
|
|
expert_attention_mask = (attention_mask[None, :, :, None, None].expand( |
|
(num_hidden_layers, batch_size, sequence_length, top_k, |
|
num_experts)).reshape(-1, top_k, num_experts).to(compute_device)) |
|
|
|
|
|
tokens_per_expert = torch.sum( |
|
expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
expert_attention_mask, dim=0) |
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
attention_mask[None, :, :, None].expand( |
|
(num_hidden_layers, batch_size, sequence_length, |
|
num_experts)).reshape(-1, num_experts).to(compute_device)) |
|
|
|
|
|
router_prob_per_expert = torch.sum( |
|
routing_weights * router_per_expert_attention_mask, |
|
dim=0) / torch.sum(router_per_expert_attention_mask, dim=0) |
|
|
|
overall_loss = torch.sum(tokens_per_expert * |
|
router_prob_per_expert.unsqueeze(0)) |
|
return overall_loss * num_experts |
|
|
|
|
|
|
|
|
|
|
|
def resolve_ffn_act_fn( |
|
ffn_act_fn: dict) -> Callable[[torch.Tensor], torch.Tensor]: |
|
"""Resolve the activation function for the feed-forward network. |
|
|
|
Args: |
|
ffn_act_fn (dict): The configuration dictionary for the activation function. |
|
The dict config must specify the 'name' of a torch.nn.functional activation |
|
function. All of other key values pairs are bound to the function as a partial. |
|
|
|
Returns: |
|
Callable[[torch.Tensor], torch.Tensor]: The activation function. |
|
""" |
|
config = deepcopy(ffn_act_fn) |
|
name = config.pop('name') |
|
if not hasattr(nn.functional, name): |
|
raise ValueError(f'Unrecognised activation function name ({name}).') |
|
act = getattr(nn.functional, name) |
|
return partial(act, **config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask: torch.Tensor): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), |
|
(1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
class DbrxAttention(nn.Module): |
|
"""Multi-head self attention.""" |
|
|
|
def __init__(self, |
|
hidden_size: int, |
|
num_heads: int, |
|
max_position_embeddings: int, |
|
attn_config: DbrxAttentionConfig, |
|
block_idx: Optional[int] = None): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = max_position_embeddings |
|
self.block_idx = block_idx |
|
self.config = attn_config |
|
if block_idx is None: |
|
logger.warning_once( |
|
f'Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will ' |
|
+ |
|
'lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` ' |
|
+ 'when creating this class.') |
|
|
|
self.attn_pdrop = attn_config.attn_pdrop |
|
self.clip_qkv = attn_config.clip_qkv |
|
self.num_key_value_heads = attn_config.kv_n_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.rope_theta = attn_config.rope_theta |
|
|
|
self.Wqkv = nn.Linear(self.hidden_size, |
|
self.hidden_size + |
|
2 * self.num_key_value_heads * self.head_dim, |
|
bias=False) |
|
self.out_proj = nn.Linear(self.hidden_size, |
|
self.hidden_size, |
|
bias=False) |
|
self.rotary_emb = DbrxRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Any, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.Wqkv(hidden_states) |
|
if self.clip_qkv is not None: |
|
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv) |
|
|
|
query_states, key_states, value_states = qkv_states.split( |
|
[ |
|
self.hidden_size, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
], |
|
dim=2, |
|
) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, |
|
self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
|
|
past_key_value = getattr(self, 'past_key_value', past_key_value) |
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, |
|
key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = { |
|
'sin': sin, |
|
'cos': cos, |
|
'cache_position': cache_position |
|
} |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.block_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose( |
|
2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, :key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, |
|
dim=-1, |
|
dtype=torch.float32).to( |
|
query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, |
|
p=self.attn_pdrop, |
|
training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is' |
|
+ f' {attn_output.size()}') |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class DbrxFlashAttention2(DbrxAttention): |
|
"""Dbrx flash attention module. |
|
|
|
This module inherits from `DbrxAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it |
|
calls the public API of flash attention. |
|
""" |
|
|
|
def __init__(self, *args: Any, **kwargs: Any): |
|
if not is_flash_attn_2_available(): |
|
raise ImportError( |
|
'Flash Attention 2 is not available. Please install it with `pip install flash-attn`.' |
|
) |
|
|
|
super().__init__(*args, **kwargs) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Any, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], |
|
Optional[Tuple[torch.Tensor]]]: |
|
logger.info( |
|
'Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.' |
|
) |
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.Wqkv(hidden_states) |
|
if self.clip_qkv is not None: |
|
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv) |
|
|
|
query_states, key_states, value_states = qkv_states.split( |
|
[ |
|
self.hidden_size, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
], |
|
dim=2, |
|
) |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, |
|
self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, |
|
key_states, cos, sin) |
|
|
|
past_key_value = getattr(self, 'past_key_value', past_key_value) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = { |
|
'sin': sin, |
|
'cos': cos, |
|
'cache_position': cache_position |
|
} |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.block_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = self.attn_pdrop if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, '_pre_quantization_dtype'): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = query_states.dtype |
|
|
|
logger.warning_once( |
|
f'The input hidden states seems to be silently casted in float32, this might be ' |
|
+ |
|
f'related to the fact you have upcasted embedding or layer norm layers in ' |
|
+ f'float32. We will cast back the input in {target_dtype}.') |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, |
|
self.hidden_size).contiguous() |
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states: torch.Tensor, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
attention_mask: Union[torch.LongTensor, None], |
|
query_length: int, |
|
dropout: float = 0.0, |
|
softmax_scale: Optional[float] = None, |
|
): |
|
"""Use FlashAttention, stripping padding tokens if necessary. |
|
|
|
Args: |
|
query_states (torch.Tensor): Input query states to be passed to Flash Attention API |
|
key_states (torch.Tensor): Input key states to be passed to Flash Attention API |
|
value_states (torch.Tensor): Input value states to be passed to Flash Attention API |
|
attention_mask (torch.LongTensor | None): The padding mask - corresponds to a tensor of size |
|
(batch_size, seq_len) where 0 stands for the position of padding tokens and 1 |
|
for the position of non-padding tokens. |
|
query_length (int): The length of the query sequence |
|
dropout (float): Attention dropout |
|
softmax_scale (float, optional): The scaling of QK^T before applying softmax. |
|
Defaults to 1 / sqrt(head_dim) |
|
""" |
|
causal = True |
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, |
|
query_length) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input( |
|
attn_output_unpad, |
|
indices_q, |
|
batch_size, |
|
query_length, |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer: torch.Tensor, key_layer: torch.Tensor, |
|
value_layer: torch.Tensor, attention_mask: torch.Tensor, |
|
query_length: int): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data( |
|
attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, |
|
head_dim), indices_k) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, |
|
head_dim), indices_k) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, |
|
head_dim), indices_k) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( |
|
query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
DBRX_ATTENTION_CLASSES = { |
|
'eager': DbrxAttention, |
|
'flash_attention_2': DbrxFlashAttention2, |
|
} |
|
|
|
|
|
class DbrxNormAttentionNorm(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
max_position_embeddings: int, |
|
resid_pdrop: float, |
|
attn_implementation: str, |
|
attn_config: DbrxAttentionConfig, |
|
block_idx: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.block_idx = block_idx |
|
self.resid_pdrop = resid_pdrop |
|
self.norm_1 = nn.LayerNorm(hidden_size, bias=False) |
|
self.attn = DBRX_ATTENTION_CLASSES[attn_implementation]( |
|
hidden_size=hidden_size, |
|
num_heads=num_heads, |
|
max_position_embeddings=max_position_embeddings, |
|
attn_config=attn_config, |
|
block_idx=block_idx, |
|
) |
|
self.norm_2 = nn.LayerNorm(hidden_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Any, |
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], |
|
Optional[Cache]]: |
|
|
|
residual_states = hidden_states |
|
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype) |
|
|
|
hidden_states, attn_weights, past_key_value = self.attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = nn.functional.dropout(hidden_states, |
|
p=self.resid_pdrop, |
|
training=self.training) |
|
hidden_states = hidden_states + residual_states |
|
|
|
residual_states = hidden_states |
|
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype) |
|
|
|
return residual_states, hidden_states, attn_weights, past_key_value |
|
|
|
|
|
class DbrxRouter(nn.Module): |
|
|
|
def __init__(self, hidden_size: int, moe_num_experts: int, moe_top_k: int, |
|
moe_jitter_eps: Optional[float], |
|
moe_normalize_expert_weights: Optional[float], |
|
uniform_expert_assignment: bool): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.moe_num_experts = moe_num_experts |
|
self.moe_top_k = moe_top_k |
|
self.moe_jitter_eps = moe_jitter_eps |
|
self.moe_normalize_expert_weights = moe_normalize_expert_weights |
|
self.uniform_expert_assignment = uniform_expert_assignment |
|
|
|
self.layer = nn.Linear(self.hidden_size, |
|
self.moe_num_experts, |
|
bias=False) |
|
|
|
def jitter(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.moe_jitter_eps is None: |
|
raise RuntimeError('The router does not have moe_jitter_eps set.') |
|
low = 1.0 - self.moe_jitter_eps |
|
high = 1.0 + self.moe_jitter_eps |
|
noise = torch.rand(x.size(), dtype=x.dtype, device=x.device) |
|
return low + noise * (high - low) |
|
|
|
def forward( |
|
self, x: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]: |
|
if self.training and self.moe_jitter_eps is not None: |
|
x = x * self.jitter(x) |
|
|
|
weights = self.layer(x.view(-1, |
|
x.shape[-1])).softmax(dim=-1, |
|
dtype=torch.float32) |
|
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1) |
|
|
|
if self.moe_normalize_expert_weights: |
|
top_weights = top_weights / torch.norm( |
|
top_weights, |
|
p=self.moe_normalize_expert_weights, |
|
dim=-1, |
|
keepdim=True) |
|
|
|
if self.uniform_expert_assignment: |
|
with torch.no_grad(): |
|
uniform_tensor = torch.arange( |
|
0, |
|
top_experts.numel(), |
|
device=top_experts.device, |
|
dtype=top_experts.dtype) % self.moe_num_experts |
|
top_experts = uniform_tensor.reshape(top_experts.shape) |
|
|
|
|
|
weights = weights.to(x.dtype) |
|
top_weights = top_weights.to(x.dtype) |
|
return weights, top_weights, top_experts |
|
|
|
|
|
class DbrxExpertGLU(nn.Module): |
|
|
|
def __init__(self, hidden_size: int, ffn_hidden_size: int, ffn_act_fn: dict): |
|
super().__init__() |
|
self.w1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False) |
|
self.v1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False) |
|
self.w2 = nn.Linear(ffn_hidden_size, hidden_size, bias=False) |
|
self.activation_fn = resolve_ffn_act_fn(ffn_act_fn) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x1 = self.w1(x) |
|
x2 = self.v1(x) |
|
x1 = self.activation_fn(x1) |
|
x1 = x1 * x2 |
|
x1 = self.w2(x1) |
|
return x1 |
|
|
|
|
|
class DbrxExperts(nn.Module): |
|
|
|
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict): |
|
super().__init__() |
|
self.moe_num_experts = moe_num_experts |
|
self.mlp_experts = nn.ModuleList([DbrxExpertGLU(hidden_size, ffn_hidden_size, ffn_act_fn) for _ in range(moe_num_experts)]) |
|
|
|
def forward(self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor) -> torch.Tensor: |
|
bsz, q_len, hidden_size = x.shape |
|
x = x.view(-1, hidden_size) |
|
out = torch.zeros_like(x) |
|
|
|
expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0) |
|
for expert_idx in range(0, self.moe_num_experts): |
|
topk_idx, token_idx = torch.where(expert_mask[expert_idx]) |
|
if token_idx.shape[0] == 0: |
|
continue |
|
|
|
token_list = token_idx.tolist() |
|
topk_list = topk_idx.tolist() |
|
|
|
expert_tokens = x[None, token_list].reshape(-1, hidden_size) |
|
expert_out = self.mlp_experts[expert_idx](expert_tokens) * top_weights[token_list, topk_list, None] |
|
|
|
out.index_add_(0, token_idx, expert_out) |
|
|
|
out = out.reshape(bsz, q_len, hidden_size) |
|
return out |
|
|
|
|
|
class DbrxFFN(nn.Module): |
|
|
|
def __init__(self, hidden_size: int, ffn_config: DbrxFFNConfig): |
|
super().__init__() |
|
|
|
self.router = DbrxRouter( |
|
hidden_size, |
|
moe_num_experts=ffn_config.moe_num_experts, |
|
moe_top_k=ffn_config.moe_top_k, |
|
moe_jitter_eps=ffn_config.moe_jitter_eps, |
|
moe_normalize_expert_weights=ffn_config. |
|
moe_normalize_expert_weights, |
|
uniform_expert_assignment=ffn_config.uniform_expert_assignment, |
|
) |
|
|
|
self.experts = DbrxExperts( |
|
hidden_size=hidden_size, |
|
ffn_hidden_size=ffn_config.ffn_hidden_size, |
|
moe_num_experts=ffn_config.moe_num_experts, |
|
ffn_act_fn=ffn_config.ffn_act_fn, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
weights, top_weights, top_experts = self.router(x) |
|
out = self.experts(x, weights, top_weights, top_experts) |
|
return out, weights |
|
|
|
|
|
class DbrxBlock(nn.Module): |
|
|
|
def __init__(self, config: DbrxConfig, block_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.d_model |
|
self.resid_pdrop = config.resid_pdrop |
|
self.block_idx = block_idx |
|
self.norm_attn_norm = DbrxNormAttentionNorm( |
|
hidden_size=config.d_model, |
|
num_heads=config.n_heads, |
|
max_position_embeddings=config.max_seq_len, |
|
resid_pdrop=config.resid_pdrop, |
|
attn_implementation=config._attn_implementation, |
|
attn_config=config.attn_config, |
|
block_idx=block_idx, |
|
) |
|
self.ffn = DbrxFFN(hidden_size=config.d_model, |
|
ffn_config=config.ffn_config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: torch.LongTensor = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Any, |
|
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, Optional[torch.Tensor]], |
|
Tuple[torch.Tensor, Optional[Cache]], Tuple[ |
|
torch.Tensor, Optional[torch.Tensor], Optional[Cache]], |
|
Tuple[torch.Tensor, Optional[torch.Tensor], |
|
Optional[torch.Tensor]], Tuple[ |
|
torch.Tensor, Optional[Cache], Optional[torch.Tensor]], |
|
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], |
|
Optional[torch.Tensor]],]: |
|
"""Forward function for DbrxBlock. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)` |
|
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length) |
|
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length) |
|
if default attention is used. |
|
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states |
|
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all |
|
attention layers. See `attentions` under returned tensors for more detail. |
|
output_router_logits (`bool`, optional): Whether or not to return the router logits. |
|
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are |
|
returned and can be used to speed up decoding (see `past_key_values`). |
|
cache_position (`torch.LongTensor`, optional): position ids of the cache |
|
""" |
|
if 'padding_mask' in kwargs: |
|
warnings.warn( |
|
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`' |
|
) |
|
|
|
|
|
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
|
|
hidden_states, router_logits = self.ffn(hidden_states) |
|
hidden_states = nn.functional.dropout(hidden_states, |
|
p=self.resid_pdrop, |
|
training=self.training) |
|
hidden_states = resid_states + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
|
|
return outputs |
|
|
|
|
|
class DbrxPreTrainedModel(PreTrainedModel): |
|
config_class = DbrxConfig |
|
base_model_prefix = 'transformer' |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ['DbrxBlock'] |
|
_skip_keys_device_placement = ['past_key_values'] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = False |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module: nn.Module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def _setup_cache(self, cache_cls: Any, max_batch_size: int, |
|
max_cache_len: int): |
|
if self.config._attn_implementation == 'flash_attention_2' and cache_cls == StaticCache: |
|
raise ValueError( |
|
'`static` cache implementation is not compatible with ' + |
|
'`attn_implementation==flash_attention_2`. Make sure to use ' + |
|
'`spda` in the mean time and open an issue at https://github.com/huggingface/transformers.' |
|
) |
|
|
|
for block in self.transformer.blocks: |
|
device = block.norm_attn_norm.norm_1.weight.device |
|
if hasattr(self.config, '_pre_quantization_dtype'): |
|
dtype = self.config._pre_quantization_dtype |
|
else: |
|
dtype = block.norm_attn_norm.attn.out_proj.weight.dtype |
|
block.norm_attn_norm.attn.past_key_value = cache_cls(self.config, |
|
max_batch_size, |
|
max_cache_len, |
|
device=device, |
|
dtype=dtype) |
|
|
|
def _reset_cache(self): |
|
for block in self.transformer.blocks: |
|
block.norm_attn_norm.attn.past_key_value = None |
|
|
|
|
|
class DbrxModel(DbrxPreTrainedModel): |
|
"""Transformer decoder consisting of *config.num_hidden_layers* |
|
|
|
[`DbrxBlock`] layers. |
|
|
|
Args: |
|
config: DbrxConfig |
|
""" |
|
|
|
def __init__(self, config: DbrxConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.emb_pdrop = config.emb_pdrop |
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.d_model, |
|
self.padding_idx) |
|
self.blocks = nn.ModuleList([ |
|
DbrxBlock(config, block_idx) for block_idx in range(config.n_layers) |
|
]) |
|
self.norm_f = nn.LayerNorm(config.d_model, bias=False) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.wte |
|
|
|
def set_input_embeddings(self, value: nn.Embedding): |
|
self.wte = value |
|
|
|
def _autocast_input_embeddings(self, |
|
inputs_embeds: torch.Tensor) -> torch.Tensor: |
|
if inputs_embeds.device.type == 'cuda' and torch.is_autocast_enabled(): |
|
return inputs_embeds.to(dtype=torch.get_autocast_gpu_dtype()) |
|
elif inputs_embeds.device.type == 'cpu' and torch.is_autocast_cpu_enabled( |
|
): |
|
return inputs_embeds.to(dtype=torch.get_autocast_cpu_dtype()) |
|
else: |
|
return inputs_embeds |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states |
|
if output_hidden_states is not None else |
|
self.config.output_hidden_states) |
|
output_router_logits = (output_router_logits |
|
if output_router_logits is not None else |
|
self.config.output_router_logits) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one' |
|
) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.' |
|
) |
|
use_cache = False |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
inputs_embeds = self._autocast_input_embeddings( |
|
inputs_embeds) |
|
inputs_embeds = nn.functional.dropout(inputs_embeds, |
|
p=self.emb_pdrop, |
|
training=self.training) |
|
|
|
past_seen_tokens = 0 |
|
if use_cache: |
|
if not isinstance(past_key_values, StaticCache): |
|
past_key_values = DynamicCache.from_legacy_cache( |
|
past_key_values) |
|
past_seen_tokens = past_key_values.get_seq_length( |
|
) |
|
|
|
if cache_position is None: |
|
if isinstance(past_key_values, StaticCache): |
|
raise ValueError( |
|
'cache_position is a required argument when using StaticCache.' |
|
) |
|
cache_position = torch.arange( |
|
past_seen_tokens, |
|
past_seen_tokens + inputs_embeds.shape[1], |
|
device=inputs_embeds.device) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, |
|
cache_position) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
next_decoder_cache = None |
|
|
|
for block in self.blocks: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
block_outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
output_router_logits, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
block_outputs = block( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
output_router_logits=output_router_logits, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = block_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = block_outputs[ |
|
2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (block_outputs[1],) |
|
|
|
if output_router_logits: |
|
all_router_logits += (block_outputs[-1],) |
|
|
|
hidden_states = self.norm_f(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = ( |
|
next_decoder_cache.to_legacy_cache() |
|
if isinstance(next_decoder_cache, Cache) else |
|
next_decoder_cache) |
|
if not return_dict: |
|
return tuple(v for v in [ |
|
hidden_states, next_cache, all_hidden_states, all_self_attns, |
|
all_router_logits |
|
] if v is not None) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def _update_causal_mask( |
|
self, attention_mask: Optional[torch.Tensor], |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor) -> Optional[torch.Tensor]: |
|
if self.config._attn_implementation == 'flash_attention_2': |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if hasattr(self.blocks[0].norm_attn_norm.attn, |
|
'past_key_value'): |
|
target_length = self.config.max_position_embeddings |
|
else: |
|
target_length = (attention_mask.shape[-1] if isinstance( |
|
attention_mask, torch.Tensor) else cache_position[-1] + 1) |
|
target_length = int(target_length) |
|
|
|
causal_mask = torch.full((sequence_length, target_length), |
|
fill_value=min_dtype, |
|
dtype=dtype, |
|
device=device) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange( |
|
target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, |
|
None, :, :].expand(input_tensor.shape[0], 1, |
|
-1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone( |
|
) |
|
if attention_mask.dim() == 2: |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[..., :mask_length].eq( |
|
0.0) * attention_mask[:, None, None, :].eq(0.0) |
|
causal_mask[..., :mask_length] = causal_mask[ |
|
..., :mask_length].masked_fill(padding_mask, min_dtype) |
|
elif attention_mask.dim() == 4: |
|
|
|
|
|
if attention_mask.shape[ |
|
-2] < cache_position[0] + sequence_length: |
|
offset = cache_position[0] |
|
else: |
|
offset = 0 |
|
mask_shape = attention_mask.shape |
|
mask_slice = (attention_mask.eq(0.0)).to( |
|
dtype=dtype) * min_dtype |
|
causal_mask[:mask_shape[0], :mask_shape[1], |
|
offset:mask_shape[2] + |
|
offset, :mask_shape[3]] = mask_slice |
|
|
|
if (self.config._attn_implementation == 'sdpa' and |
|
attention_mask is not None and |
|
attention_mask.device.type == 'cuda'): |
|
|
|
is_tracing = ( |
|
torch.jit.is_tracing() or |
|
isinstance(input_tensor, torch.fx.Proxy) or |
|
(hasattr(torch, '_dynamo') and torch._dynamo.is_compiling())) |
|
if not is_tracing and torch.any(attention_mask != 1): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended( |
|
causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
class DbrxForCausalLM(DbrxPreTrainedModel): |
|
|
|
def __init__(self, config: DbrxConfig): |
|
super().__init__(config) |
|
self.transformer = DbrxModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, |
|
config.vocab_size, |
|
bias=False) |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
self.num_experts = config.ffn_config.moe_num_experts |
|
self.num_experts_per_tok = config.ffn_config.moe_top_k |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.transformer.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value: nn.Embedding): |
|
self.transformer.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self) -> nn.Linear: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder: DbrxModel): |
|
self.transformer = decoder |
|
|
|
def get_decoder(self) -> DbrxModel: |
|
return self.transformer |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
r"""Forward function for causal language modeling. |
|
|
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, DbrxForCausalLM |
|
|
|
>>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
``` |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states |
|
if output_hidden_states is not None else |
|
self.config.output_hidden_states) |
|
output_router_logits = (output_router_logits |
|
if output_router_logits is not None else |
|
self.config.output_router_logits) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.transformer( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
aux_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], |
|
self.num_experts, |
|
self.num_experts_per_tok, |
|
attention_mask, |
|
) |
|
if labels is not None and loss is not None: |
|
loss += self.router_aux_loss_coef * aux_loss.to( |
|
loss.device) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
past_key_values: Optional[Cache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
**kwargs: Any) -> Dict[str, Any]: |
|
past_length = 0 |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[ |
|
1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, |
|
-(attention_mask.shape[1] - past_length):] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if (max_cache_length is not None and attention_mask is not None and |
|
cache_length + input_ids.shape[1] > max_cache_length): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get('position_ids', None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
if self.generation_config.cache_implementation == 'static': |
|
|
|
cache_position = kwargs.get('cache_position', None) |
|
if cache_position is None: |
|
past_length = 0 |
|
else: |
|
past_length = cache_position[-1] + 1 |
|
input_ids = input_ids[:, past_length:] |
|
position_ids = position_ids[:, |
|
past_length:] if position_ids is not None else None |
|
|
|
|
|
|
|
input_length = position_ids.shape[ |
|
-1] if position_ids is not None else input_ids.shape[-1] |
|
cache_position = torch.arange(past_length, |
|
past_length + input_length, |
|
device=input_ids.device) |
|
position_ids = position_ids.contiguous( |
|
) if position_ids is not None else None |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
|
|
|
|
|
|
model_inputs = {'input_ids': input_ids.contiguous()} |
|
|
|
model_inputs.update( |
|
{ |
|
'position_ids': position_ids, |
|
'cache_position': cache_position, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache'), |
|
'attention_mask': attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past),) |
|
return reordered_past |
|
|