RizzlerGPT-v1 / app.py
v1peridae's picture
Upload 4 files
2d8b796 verified
# imports
import gradio as gr
import torch
import torch.nn as nn
from torch.nn import functional as F
print("done importing packages...")
with open('dataset.txt', 'r') as f:
text = f.read()
# hyperparms
batch_size = 16
block_size = 32
max_iters = 5000
eval_interval = 100
learning_rate = 0.001
eval_iters = 200
n_embd = 64
n_head = 4
n_layer = 4
dropout = 0.0
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.manual_seed(1337)
print("big brain stuff! setting up hyperparams")
#chars and mapping
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
print("making human language understandable for my computer brain")
# training and test data split
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data))
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2,-1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embd, n_head):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
# bigram model
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=device))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
model = BigramLanguageModel()
model.load_state_dict(torch.load("state.skibidi",map_location = torch.device(device)))
m = model.to(device)
def generate_text(input_word, max_new_tokens=100):
model.eval()
input_indices = torch.tensor([encode(input_word)], dtype=torch.long, device=device)
generated_indices = model.generate(input_indices, max_new_tokens=max_new_tokens)
return decode(generated_indices[0].tolist())
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="W Sigma GPT according to critics"),
gr.Slider(minimum=1, maximum=1000, step=1, label="Number of characters to generate", value=100)
],
outputs=gr.Textbox(label="Generated Text"),
title="RizzlerGPT",
description="Best GPT in Ohio"
)
if __name__ == "__main__":
iface.launch()
print("running!")