# imports import gradio as gr import torch import torch.nn as nn from torch.nn import functional as F print("done importing packages...") with open('dataset.txt', 'r') as f: text = f.read() # hyperparms batch_size = 16 block_size = 32 max_iters = 5000 eval_interval = 100 learning_rate = 0.001 eval_iters = 200 n_embd = 64 n_head = 4 n_layer = 4 dropout = 0.0 device = 'cuda' if torch.cuda.is_available() else 'cpu' torch.manual_seed(1337) print("big brain stuff! setting up hyperparams") #chars and mapping chars = sorted(list(set(text))) vocab_size = len(chars) stoi = { ch:i for i,ch in enumerate(chars) } itos = { i:ch for i,ch in enumerate(chars) } encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) print("making human language understandable for my computer brain") # training and test data split data = torch.tensor(encode(text), dtype=torch.long) n = int(0.9*len(data)) train_data = data[:n] val_data = data[n:] # data loading def get_batch(split): data = train_data if split == 'train' else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([data[i:i+block_size] for i in ix]) y = torch.stack([data[i+1:i+block_size+1] for i in ix]) x, y = x.to(device), y.to(device) return x, y @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out class Head(nn.Module): def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) self.dropout = nn.Dropout(dropout) def forward(self, x): B,T,C = x.shape k = self.key(x) q = self.query(x) wei = q @ k.transpose(-2,-1) * C**-0.5 wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) v = self.value(x) out = wei @ v return out class MultiHeadAttention(nn.Module): def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(n_embd, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedFoward(nn.Module): def __init__(self, n_embd): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Block(nn.Module): def __init__(self, n_embd, n_head): super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention(n_head, head_size) self.ffwd = FeedFoward(n_embd) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return x # bigram model class BigramLanguageModel(nn.Module): def __init__(self): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, n_embd) self.position_embedding_table = nn.Embedding(block_size, n_embd) self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) self.ln_f = nn.LayerNorm(n_embd) self.lm_head = nn.Linear(n_embd, vocab_size) def forward(self, idx, targets=None): B, T = idx.shape tok_emb = self.token_embedding_table(idx) pos_emb = self.position_embedding_table(torch.arange(T, device=device)) x = tok_emb + pos_emb x = self.blocks(x) x = self.ln_f(x) logits = self.lm_head(x) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): for _ in range(max_new_tokens): idx_cond = idx[:, -block_size:] logits, loss = self(idx_cond) logits = logits[:, -1, :] probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx model = BigramLanguageModel() model.load_state_dict(torch.load("state.skibidi",map_location = torch.device(device))) m = model.to(device) def generate_text(input_word, max_new_tokens=100): model.eval() input_indices = torch.tensor([encode(input_word)], dtype=torch.long, device=device) generated_indices = model.generate(input_indices, max_new_tokens=max_new_tokens) return decode(generated_indices[0].tolist()) iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt", placeholder="W Sigma GPT according to critics"), gr.Slider(minimum=1, maximum=1000, step=1, label="Number of characters to generate", value=100) ], outputs=gr.Textbox(label="Generated Text"), title="RizzlerGPT", description="Best GPT in Ohio" ) if __name__ == "__main__": iface.launch() print("running!")