utyug1 commited on
Commit
238f968
·
1 Parent(s): 668392a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -8,16 +8,17 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 164.58 +/- 87.78
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
  # **PPO** Agent playing **LunarLander-v2**
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -130.48 +/- 93.26
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f883c35eb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f883c35eb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f883c35ec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f883c35ecb0>", "_build": "<function ActorCriticPolicy._build at 0x7f883c35ed40>", "forward": "<function ActorCriticPolicy.forward at 0x7f883c35edd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f883c35ee60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f883c35eef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f883c35ef80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f883c2e4050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f883c2e40e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f883c3289c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658648662.7210667, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDj/b3EO8s+egULPnKdIb4PZV49FhFJPQAAAAAAAAAALV4rvkSRED/Q1hg+2Yluvqu2gLyUyY49AAAAAAAAAAAAQT299hhOuh5KKzp3b9SzDdh/u8F/RrkAAIA/AACAP01J4T3hiIC6KuF/u9EM2jalm4a5Ki5DtgAAAAAAAIA/TaBVvZ+3bT6K0U894MGSva3VJ71IjUe8AAAAAAAAAABzQZG9yoePP57wEr7m9YW+cA6ivQhrsroAAAAAAAAAAMDMoj7s44I6biQGvKdfjThgAS48osfnOQAAgD8AAIA/Jl9oPuO2qz/SJtM+FOiAvibONj4HRAY9AAAAAAAAAACa7c69sczfPZWiuj2dfUK+FMHKPegMND4AAAAAAAAAADNksr2kQBy5wNPqu9MUKLY7sVi6G/maNQAAAAAAAIA/mmb8vXzZ8z4czp87gH1HvqrcGT4YA8+9AAAAAAAAAADANF0+xC4UvU12hjw/Ciu7ejSCviYBA7wAAIA/AACAP5qdzDsUPJ66ujZUulFLSbXPE9I6W8R0OQAAgD8AAIA/ZlMjPa4Zl7quByE6ad4ONdumfrqmSDq5AACAPwAAgD/mlxM9j9o4usoRQLvv4sw0Tr8Su4XpWzoAAIA/AACAP4DJLD1xjRy5Nj4juncWtLO0e0m7CEtCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnsuUxPMYUCUhpRSlIwBbJRN6AOMAXSUR0CN6vP3SKFadX2UKGgGaAloD0MI/MdCdAhcCkCUhpRSlGgVS/NoFkdAjfJA/C66KHV9lChoBmgJaA9DCOepDrkZa15AlIaUUpRoFU3oA2gWR0COAEvf0mMPdX2UKGgGaAloD0MIFsH/VrINQkCUhpRSlGgVTWsCaBZHQI4EQ7zTWoZ1fZQoaAZoCWgPQwh1j2yumvNfQJSGlFKUaBVN6ANoFkdAjgVYqPOpsHV9lChoBmgJaA9DCJs6j4r/N1pAlIaUUpRoFU3oA2gWR0COCEsaKk2xdX2UKGgGaAloD0MIhA1PrxRAYECUhpRSlGgVTegDaBZHQI4NSScLBsR1fZQoaAZoCWgPQwj6X65FC41cQJSGlFKUaBVN6ANoFkdAjjxrwOOKfnV9lChoBmgJaA9DCPwZ3qzBrVNAlIaUUpRoFU3oA2gWR0COP6izsyBTdX2UKGgGaAloD0MIDhZO0vxhWECUhpRSlGgVTegDaBZHQI5PScZtNzt1fZQoaAZoCWgPQwiSI52BkRRfQJSGlFKUaBVN6ANoFkdAjlzO+7Dl5nV9lChoBmgJaA9DCAjnU8cq6WdAlIaUUpRoFU3uAWgWR0COXsMPSUkfdX2UKGgGaAloD0MIforjwKu6XUCUhpRSlGgVTegDaBZHQI5kghllK9R1fZQoaAZoCWgPQwh8uOS40/dgQJSGlFKUaBVN6ANoFkdAjmdVK5Cng3V9lChoBmgJaA9DCGeBdocUszrAlIaUUpRoFUvzaBZHQI5yd7MPjGV1fZQoaAZoCWgPQwhs6jwq/qthQJSGlFKUaBVN6ANoFkdAjnbnX2/SIHV9lChoBmgJaA9DCNv3qL9esFlAlIaUUpRoFU3oA2gWR0COfjeXzDoAdX2UKGgGaAloD0MIYw6CjlagWECUhpRSlGgVTegDaBZHQI6EU9wFTvR1fZQoaAZoCWgPQwi0rWad8fkzQJSGlFKUaBVNBAFoFkdAjoeADJU5uXV9lChoBmgJaA9DCJ5A2ClWcVxAlIaUUpRoFU3oA2gWR0COnKrtE5QxdX2UKGgGaAloD0MIGuHtQQgoDMCUhpRSlGgVTQwBaBZHQI6oX5FgDzR1fZQoaAZoCWgPQwjwbfqzH8BfQJSGlFKUaBVN6ANoFkdAjq/gv114gXV9lChoBmgJaA9DCAHbwYh9WlNAlIaUUpRoFU3oA2gWR0COs3MGorFwdX2UKGgGaAloD0MIpkQSvQwZYUCUhpRSlGgVTegDaBZHQI60Zsyi22J1fZQoaAZoCWgPQwhIpG38ie1aQJSGlFKUaBVN6ANoFkdAjrb5zgdfcHV9lChoBmgJaA9DCOqURzfCIVxAlIaUUpRoFU3oA2gWR0COu88QqZtvdX2UKGgGaAloD0MIFygpsADmCsCUhpRSlGgVTSUBaBZHQI7pYbMotth1fZQoaAZoCWgPQwjZmULntfhhQJSGlFKUaBVN6ANoFkdAjulhpQDV6XV9lChoBmgJaA9DCJsdqb7zN01AlIaUUpRoFU3oA2gWR0CO7BFG5MDfdX2UKGgGaAloD0MIpmH4iJgCFECUhpRSlGgVS8VoFkdAju/2DYh+v3V9lChoBmgJaA9DCLadtkYEkyJAlIaUUpRoFU0pAWgWR0CPBFko4MnadX2UKGgGaAloD0MIOe//4wTAYECUhpRSlGgVTegDaBZHQI8F+oo/iYN1fZQoaAZoCWgPQwhbI4JxcJFSQJSGlFKUaBVN6ANoFkdAjweZ6+nIhnV9lChoBmgJaA9DCK+ytike+0FAlIaUUpRoFU0KAWgWR0CPDR9pAUtadX2UKGgGaAloD0MIS8yzktYyYUCUhpRSlGgVTegDaBZHQI8O+YYzi0h1fZQoaAZoCWgPQwgFpP0PMEJgQJSGlFKUaBVN6ANoFkdAjxlM0HhS+HV9lChoBmgJaA9DCAIOoUrNjmFAlIaUUpRoFU3oA2gWR0CPHUh11W8zdX2UKGgGaAloD0MIxw2/m+6HZkCUhpRSlGgVTegDaBZHQI8j/nlnyup1fZQoaAZoCWgPQwiJsyJqIoBgQJSGlFKUaBVN6ANoFkdAjy3jfm9xqHV9lChoBmgJaA9DCAXAeAYNqTrAlIaUUpRoFU11AWgWR0CPNmkxASnMdX2UKGgGaAloD0MIGt6swftCRMCUhpRSlGgVTVYBaBZHQI88LS3LFGZ1fZQoaAZoCWgPQwjzkCkfglNmQJSGlFKUaBVN6ANoFkdAj1A4tpVS43V9lChoBmgJaA9DCD9XW7G/GFtAlIaUUpRoFU3oA2gWR0CPWBLIxQBQdX2UKGgGaAloD0MIVHO5wVA0XUCUhpRSlGgVTegDaBZHQI9crzGxUvR1fZQoaAZoCWgPQwgxXYjVH51QQJSGlFKUaBVN6ANoFkdAj19+3QUpNXV9lChoBmgJaA9DCLPROT/FbV9AlIaUUpRoFU3oA2gWR0CPlDHNHH3ldX2UKGgGaAloD0MI7DNnfcqxUkCUhpRSlGgVTegDaBZHQI+UM/D+BH11fZQoaAZoCWgPQwio34Wt2apZQJSGlFKUaBVN6ANoFkdAj5wfWDpTuXV9lChoBmgJaA9DCJ3Ul6Wd6lJAlIaUUpRoFU3oA2gWR0CPsecFQl8gdX2UKGgGaAloD0MI/rj98snDZUCUhpRSlGgVTdcDaBZHQI+y4oqkM1F1fZQoaAZoCWgPQwiYv0LmyohUQJSGlFKUaBVN6ANoFkdAj7rX1J17pnV9lChoBmgJaA9DCEN0CBwJo15AlIaUUpRoFU3oA2gWR0CPx1pNbkfcdX2UKGgGaAloD0MIxciSOZYfZUCUhpRSlGgVTegDaBZHQI/LwFLWZqp1fZQoaAZoCWgPQwguNxjqMJFjQJSGlFKUaBVN6ANoFkdAj9MU/W1+iXV9lChoBmgJaA9DCMYzaOifrVpAlIaUUpRoFU3oA2gWR0CP3TrsSkCWdX2UKGgGaAloD0MImKPH721KEcCUhpRSlGgVTTYBaBZHQI/khR8+ial1fZQoaAZoCWgPQwj6tmCpLplfQJSGlFKUaBVN6ANoFkdAj+VTvqkdm3V9lChoBmgJaA9DCNBGrptSPElAlIaUUpRoFU3oA2gWR0CP6nLPD50sdX2UKGgGaAloD0MIfQc/cQDTVcCUhpRSlGgVTTsBaBZHQI/w/StvGZN1fZQoaAZoCWgPQwhKl/4lqTFgQJSGlFKUaBVN6ANoFkdAj/vGDL8rJHV9lChoBmgJaA9DCC5W1GCadWZAlIaUUpRoFU3oA2gWR0CQASHJcPe6dX2UKGgGaAloD0MIUn5S7dNdTcCUhpRSlGgVTXABaBZHQJABMzBRAKR1fZQoaAZoCWgPQwgtsp3vp/JaQJSGlFKUaBVN6ANoFkdAkAMfShJyyXV9lChoBmgJaA9DCDrrU47JUGFAlIaUUpRoFU3oA2gWR0CQBFTufEn9dX2UKGgGaAloD0MI6GnAIOlUYECUhpRSlGgVTegDaBZHQJALuFvhqCZ1fZQoaAZoCWgPQwj59q5BX2dcQJSGlFKUaBVN6ANoFkdAkAu6Fh5PdnV9lChoBmgJaA9DCJvj3CbckFNAlIaUUpRoFU3oA2gWR0CQIrNZNfw7dX2UKGgGaAloD0MI/yWpTDEjZUCUhpRSlGgVTegDaBZHQJAwSorFwUB1fZQoaAZoCWgPQwg0TG2pg5dfQJSGlFKUaBVN6ANoFkdAkDDpLqUu+XV9lChoBmgJaA9DCIjxmld1rjVAlIaUUpRoFUv+aBZHQJAyxlAeJYV1fZQoaAZoCWgPQwgx7Zv7q3s9QJSGlFKUaBVN6ANoFkdAkEBZOSGJvnV9lChoBmgJaA9DCMZpiCr8CVtAlIaUUpRoFU3oA2gWR0CQS3IDoyKvdX2UKGgGaAloD0MIya60jNTFXkCUhpRSlGgVTegDaBZHQJBQEA0bcXZ1fZQoaAZoCWgPQwhUbqKW5thXQJSGlFKUaBVN6ANoFkdAkFCI9cKPXHV9lChoBmgJaA9DCMSww5j0XVlAlIaUUpRoFU3oA2gWR0CQU7f2bobGdX2UKGgGaAloD0MIiEm4kEfqWECUhpRSlGgVTegDaBZHQJBXZwOvt+l1fZQoaAZoCWgPQwiPjNXmfxZjQJSGlFKUaBVN6ANoFkdAkF1GhVU+93V9lChoBmgJaA9DCFlMbD6uPRzAlIaUUpRoFU3oA2gWR0CQYLrtmcvvdX2UKGgGaAloD0MIJa/OMSD1X0CUhpRSlGgVTegDaBZHQJBgzO7g88t1fZQoaAZoCWgPQwiXcVMDTa1hQJSGlFKUaBVN6ANoFkdAkGK8NQTEi3V9lChoBmgJaA9DCCzvqgfMMlBAlIaUUpRoFU3oA2gWR0CQY9gdOqNqdX2UKGgGaAloD0MIlNxhE5nlWkCUhpRSlGgVTegDaBZHQJBp6Mzdk8R1fZQoaAZoCWgPQwiHwmfr4EAkwJSGlFKUaBVNMgFoFkdAkGpJ5u63AnV9lChoBmgJaA9DCDZ39L9cRFlAlIaUUpRoFU3oA2gWR0CQf44Z/CqIdX2UKGgGaAloD0MIODEkJxOkWUCUhpRSlGgVTegDaBZHQJCJ160IC2d1fZQoaAZoCWgPQwiazHhb6QBeQJSGlFKUaBVN6ANoFkdAkIpXSKFZgXV9lChoBmgJaA9DCBBaD18mTGZAlIaUUpRoFU3oA2gWR0CQi93AVO9GdX2UKGgGaAloD0MIh2u1h70GXUCUhpRSlGgVTegDaBZHQJCWt0hePaN1fZQoaAZoCWgPQwj1nV+UICZhQJSGlFKUaBVN6ANoFkdAkKAEsSTQmnV9lChoBmgJaA9DCAlwehfv50pAlIaUUpRoFU3oA2gWR0CQpC9V3ljmdX2UKGgGaAloD0MIi28ofDZtY0CUhpRSlGgVTegDaBZHQJCkoOWjXWh1fZQoaAZoCWgPQwglsaTcfZtfQJSGlFKUaBVN6ANoFkdAkKdoF3Y+S3V9lChoBmgJaA9DCLCqXn6nvUdAlIaUUpRoFU0+AWgWR0CQrWu63AmBdX2UKGgGaAloD0MIjPhOzHphXkCUhpRSlGgVTegDaBZHQJCxD1YhdMV1fZQoaAZoCWgPQwiGdePdkWlhQJSGlFKUaBVN6ANoFkdAkLSTMzMzM3V9lChoBmgJaA9DCEEpWrkXQlFAlIaUUpRoFU3oA2gWR0CQtKUrTYukdX2UKGgGaAloD0MIqaCi6lePW0CUhpRSlGgVTegDaBZHQJC2nRCx/ut1fZQoaAZoCWgPQwj5SbVPR/9jQJSGlFKUaBVN6ANoFkdAkLfdihFmWnV9lChoBmgJaA9DCBN/FHXm9mBAlIaUUpRoFU3oA2gWR0CQvyg3tKI0dX2UKGgGaAloD0MIFw6EZAGlQ0CUhpRSlGgVTegDaBZHQJC/pD6WPcV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f51c6f7f670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51c6f7f700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51c6f7f790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51c6f7f820>", "_build": "<function ActorCriticPolicy._build at 0x7f51c6f7f8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f51c6f7f940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51c6f7f9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f51c6f7fa60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51c6f7faf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51c6f7fb80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51c6f7fc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f51c6f76c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670707792233779737, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPCMb2U+K4/rkghv9f6rb5ef3Q9zOoZPgAAAAAAAAAAzUxCu96YUT9epyo8Ou9Xv3VgyT0LgRw+AAAAAAAAAADSYg0/zV7/PtvqYT9dyY6/10a8vow2pL0AAAAAAAAAABr2Gz4k3rg/oA79Plv0NL5L6Y6+stVnvgAAAAAAAAAA7Q+LvszuZj/pQkK/QndKv8LYpD5O7y49AAAAAAAAAAAzIWG8NAPCP565n732i5g+KrTdvFrTlb0AAAAAAAAAAB6eM7/URUo/wtG2v9GGhb8KE5g/JiV7PgAAAAAAAAAAY+52v556jz3b9eG/Auakv/l+gz86s7O/AAAAAAAAgD8z3pQ8CamQP3UiyT0dRzi/7TGPvG19yLwAAAAAAAAAAJoBVruSeKY/0gQ3vQ/I+b6Oa6g8I8+TPQAAAAAAAAAAMEeWPpl5oD4iYh0/Fv2wv8pCpr5w8Qu+AAAAAAAAAACNVuI97sugPsLkpb5udbO/z4WuP4Jdsz4AAAAAAAAAAHoVEL92smY9OucbvmH2Lj4jSLc/4EVCPwAAAAAAAAAAs7HvvXBBRj+Lx4O++bB/v8h/1j3NVqM9AAAAAAAAAADGiwA+FzYjP2tWiD7QXIG/Cyo9PdkOur0AAAAAAAAAACYYmL15e74/jwUjv5lSWD64kJM9dqT3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4/viUpWNY8CUhpRSlIwBbJRLT4wBdJRHQEDlQQ+UyHp1fZQoaAZoCWgPQwjuQ95y9fZgwJSGlFKUaBVLRWgWR0BA5iZF5OafdX2UKGgGaAloD0MIqS9LOzXmXcCUhpRSlGgVS31oFkdAQOmsFMZgonV9lChoBmgJaA9DCK3D0VW62l3AlIaUUpRoFUtDaBZHQEDuiRGMGX51fZQoaAZoCWgPQwgB3CxeLIxYwJSGlFKUaBVLTGgWR0BA7uHnEETydX2UKGgGaAloD0MITKWfcHa6V8CUhpRSlGgVSzpoFkdAQO/nyNGViXV9lChoBmgJaA9DCJ+wxAOKRHfAlIaUUpRoFUtJaBZHQED0KtxMnJF1fZQoaAZoCWgPQwijrUoi+65bwJSGlFKUaBVLSGgWR0BA9Qu/UONHdX2UKGgGaAloD0MIMLq8OVyoUcCUhpRSlGgVS0hoFkdAQPbPldTo+3V9lChoBmgJaA9DCKIMVTGVbF/AlIaUUpRoFUtcaBZHQED3hESdvsJ1fZQoaAZoCWgPQwgVrHE2HctawJSGlFKUaBVLUWgWR0BA+GHxjJ+2dX2UKGgGaAloD0MIFNGvrV9LcsCUhpRSlGgVS2RoFkdAQPv6oESuhnV9lChoBmgJaA9DCNm0UghkM2zAlIaUUpRoFUtnaBZHQED/M1TBInV1fZQoaAZoCWgPQwiSzyueemFvwJSGlFKUaBVLXGgWR0BBAqAJ9iMHdX2UKGgGaAloD0MIHa9A9KQZXsCUhpRSlGgVS31oFkdAQQh+H8CPqHV9lChoBmgJaA9DCNB/D167VFPAlIaUUpRoFUs6aBZHQEEI+zMRpUR1fZQoaAZoCWgPQwiEoKNVrVxqwJSGlFKUaBVLQ2gWR0BBC7dJrcj8dX2UKGgGaAloD0MISdi3kwivccCUhpRSlGgVS1BoFkdAQQyn3ta6jHV9lChoBmgJaA9DCM7eGW0Vn3DAlIaUUpRoFUtfaBZHQEEO9bor4Fl1fZQoaAZoCWgPQwgapyGqcDtkwJSGlFKUaBVLSGgWR0BBF3pwCKaYdX2UKGgGaAloD0MIeuOkMO9OWcCUhpRSlGgVS01oFkdAQRqaLGaQWHV9lChoBmgJaA9DCDsYsU8AqF7AlIaUUpRoFUuDaBZHQEEcl1KXfIl1fZQoaAZoCWgPQwg4S8lyEpVgwJSGlFKUaBVLXGgWR0BBHvMB6rvLdX2UKGgGaAloD0MIXtcv2E3jc8CUhpRSlGgVS2toFkdAQR+BWgezU3V9lChoBmgJaA9DCOAPP/896ljAlIaUUpRoFUtSaBZHQEEh0voNd7h1fZQoaAZoCWgPQwiQZcHEHwk0QJSGlFKUaBVLhWgWR0BBInWattALdX2UKGgGaAloD0MIwy6KHvhbVcCUhpRSlGgVS2loFkdAQSgkxASnL3V9lChoBmgJaA9DCNe9FYkJIWXAlIaUUpRoFUuBaBZHQEEueAd4mkZ1fZQoaAZoCWgPQwj2tMNfkzpjwJSGlFKUaBVLVGgWR0BBMn3lCCz1dX2UKGgGaAloD0MIn+QOm4isdMCUhpRSlGgVS2RoFkdAQTeCAc1fmnV9lChoBmgJaA9DCDY7Un0n7HTAlIaUUpRoFUs6aBZHQEE6C8OCoTB1fZQoaAZoCWgPQwgLz0vFRm1iwJSGlFKUaBVLcGgWR0BBPP3i704BdX2UKGgGaAloD0MIpkdTPRkWY8CUhpRSlGgVS4VoFkdAQTzXFtKqXHV9lChoBmgJaA9DCBYYsrrVw0TAlIaUUpRoFUtIaBZHQEFALEUCaJB1fZQoaAZoCWgPQwjni70XX6dbwJSGlFKUaBVLhGgWR0BBQDnFHavidX2UKGgGaAloD0MImSuDaoN0XcCUhpRSlGgVS2toFkdAQUFqpLmITHV9lChoBmgJaA9DCFZHjnSGNW7AlIaUUpRoFUtxaBZHQEFB2mHgxah1fZQoaAZoCWgPQwgtBaT9D6VUwJSGlFKUaBVLVWgWR0BBQfaQFLWadX2UKGgGaAloD0MI/8u1aEEnccCUhpRSlGgVS2VoFkdAQUXJiiItUXV9lChoBmgJaA9DCFjhlo8kgHTAlIaUUpRoFUtjaBZHQEFJXPqs2eh1fZQoaAZoCWgPQwiEKjV7oPBYwJSGlFKUaBVLQGgWR0BBS5Gax5cDdX2UKGgGaAloD0MI12t6UFBtWsCUhpRSlGgVSzxoFkdAQVIGB4D9wXV9lChoBmgJaA9DCIyGjEepilLAlIaUUpRoFUtAaBZHQEFV+x4Y77t1fZQoaAZoCWgPQwjS/ZyC/MlrwJSGlFKUaBVLeWgWR0BBV+gte2NOdX2UKGgGaAloD0MI12t6UFAFXMCUhpRSlGgVSz1oFkdAQVwHTqjaf3V9lChoBmgJaA9DCLHDmPR38mjAlIaUUpRoFUuAaBZHQEFbpTuOS4h1fZQoaAZoCWgPQwix+47hMTNowJSGlFKUaBVLfWgWR0BBYF+3H7xedX2UKGgGaAloD0MIxk54CU6UZ8CUhpRSlGgVS09oFkdAQWLRtxdY4nV9lChoBmgJaA9DCNCZtKk6QWvAlIaUUpRoFUtwaBZHQEFlVinYQJ51fZQoaAZoCWgPQwjyJVRwuDBywJSGlFKUaBVLV2gWR0BBZ6y0KJEZdX2UKGgGaAloD0MI6LzGLlElM8CUhpRSlGgVS2loFkdAQWuVNYbKinV9lChoBmgJaA9DCEg3wqKiqmDAlIaUUpRoFUtqaBZHQEFr4nF5v991fZQoaAZoCWgPQwgZqfdUDkp0wJSGlFKUaBVLYGgWR0BBbFpfx+a0dX2UKGgGaAloD0MIa2EW2jmaa8CUhpRSlGgVS05oFkdAQW7SVnmJWXV9lChoBmgJaA9DCA8om3KFtl3AlIaUUpRoFUtMaBZHQEF0XTEzfrN1fZQoaAZoCWgPQwhlijkIOtpawJSGlFKUaBVLZGgWR0BBdhMrVe8gdX2UKGgGaAloD0MIhq3Zyku+VMCUhpRSlGgVS3FoFkdAQXfssxwhn3V9lChoBmgJaA9DCBjuXBjptl/AlIaUUpRoFUt/aBZHQEF4bMotthx1fZQoaAZoCWgPQwiLbyh8tjREwJSGlFKUaBVLQWgWR0BBeY6fapPzdX2UKGgGaAloD0MI9iSwOQdFXMCUhpRSlGgVSz5oFkdAQXv3vhIe5nV9lChoBmgJaA9DCEMAcOzZIWfAlIaUUpRoFUtDaBZHQEGChzvJA+p1fZQoaAZoCWgPQwi69C9JZRJZwJSGlFKUaBVLYGgWR0BBgneBQN1AdX2UKGgGaAloD0MIrfnxlxYjXsCUhpRSlGgVS21oFkdAQYam65Gz8nV9lChoBmgJaA9DCEEqxY7Gj3TAlIaUUpRoFUtKaBZHQEGMIPbwjMV1fZQoaAZoCWgPQwghlWJH49VXwJSGlFKUaBVLQ2gWR0BBjCblRxcWdX2UKGgGaAloD0MIO6xwy0d7YMCUhpRSlGgVS25oFkdAQY0Gmk30gHV9lChoBmgJaA9DCO54k9+ikFzAlIaUUpRoFUtgaBZHQEGN07KaG6B1fZQoaAZoCWgPQwidSDDVzNRrwJSGlFKUaBVLPmgWR0BBkBFNL128dX2UKGgGaAloD0MIcLGiBlNrYsCUhpRSlGgVS0FoFkdAQZYGD+R5knV9lChoBmgJaA9DCE/pYP0fNWHAlIaUUpRoFUtlaBZHQEGZ01ZTyax1fZQoaAZoCWgPQwjltKfkHDFjwJSGlFKUaBVLSWgWR0BBnWUKRdQgdX2UKGgGaAloD0MIaMwk6sWVgMCUhpRSlGgVS3JoFkdAQZ9ocrAgxXV9lChoBmgJaA9DCB10CYdeGHHAlIaUUpRoFUtcaBZHQEGgCYkVvdd1fZQoaAZoCWgPQwgt7GmHP91owJSGlFKUaBVLSGgWR0BBpEn1FpfydX2UKGgGaAloD0MI2iCTjJz6dsCUhpRSlGgVS2JoFkdAQaYexOclPnV9lChoBmgJaA9DCBuADYjQ63bAlIaUUpRoFUuQaBZHQEGowPAfuCx1fZQoaAZoCWgPQwhMbhRZK4NzwJSGlFKUaBVLVGgWR0BBqXJ5mh/RdX2UKGgGaAloD0MI2XbaGhE0WMCUhpRSlGgVS39oFkdAQbF/rjYI0XV9lChoBmgJaA9DCLhZvFgYR1DAlIaUUpRoFUtQaBZHQEGyYKIBRyh1fZQoaAZoCWgPQwgjaw2l9uJYwJSGlFKUaBVLTWgWR0BBs03n6l+FdX2UKGgGaAloD0MIsDvdeeLtTcCUhpRSlGgVS0VoFkdAQbTollbu+nV9lChoBmgJaA9DCACrI0c6r1nAlIaUUpRoFUtbaBZHQEG1544ZMtd1fZQoaAZoCWgPQwjshJfg1BZUwJSGlFKUaBVLaWgWR0BBtqEOAiFCdX2UKGgGaAloD0MIVMiVehaETMCUhpRSlGgVS0JoFkdAQbrviLl3hXV9lChoBmgJaA9DCLDkKha/kGXAlIaUUpRoFUtAaBZHQEG7+DvmYBx1fZQoaAZoCWgPQwiQFmcMc3JswJSGlFKUaBVLTGgWR0BBvAFxGUfQdX2UKGgGaAloD0MIAaJgxlSGdcCUhpRSlGgVS2doFkdAQbvustCiRHV9lChoBmgJaA9DCK7VHvZCBVfAlIaUUpRoFUtNaBZHQEHBt3wCr951fZQoaAZoCWgPQwgV/aGZJy9dwJSGlFKUaBVLeGgWR0BBwl3yI55rdX2UKGgGaAloD0MI02uzsZI/cMCUhpRSlGgVS1VoFkdAQcp4hUzbe3V9lChoBmgJaA9DCLnH0oeuxHTAlIaUUpRoFUtlaBZHQEHPz5oGpuN1fZQoaAZoCWgPQwiv0t11NpdbwJSGlFKUaBVLYGgWR0BB0yXlbNbDdX2UKGgGaAloD0MIDf/pBopwYMCUhpRSlGgVS0loFkdAQdSDyvs7dXV9lChoBmgJaA9DCMhcGVRb83XAlIaUUpRoFUtVaBZHQEHWXokiUxF1fZQoaAZoCWgPQwhQHEC/72d4wJSGlFKUaBVLVmgWR0BB22GqPwNLdX2UKGgGaAloD0MIpu1fWemdbcCUhpRSlGgVS1VoFkdAQeM1Muez2XV9lChoBmgJaA9DCEuQEVBhPG3AlIaUUpRoFUtbaBZHQEHlGBFuvU11fZQoaAZoCWgPQwgMAcCxZz9swJSGlFKUaBVLcGgWR0BB5doWYWtVdX2UKGgGaAloD0MIfxe2ZqsNYsCUhpRSlGgVS2doFkdAQeZxtHhCMXV9lChoBmgJaA9DCI5bzM/N0nLAlIaUUpRoFUuNaBZHQEHpgH/tICl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d24509d5547123adbcc8ed39e64607b146b2ee08448e22bd613900b89b96e696
3
- size 147140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2b2475a4ecd52d6f9326727ec5892b5f9ca0f92eeea1e42178853f57becd352
3
+ size 147065
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.0
 
1
+ 1.6.2
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f883c35eb00>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f883c35eb90>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f883c35ec20>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f883c35ecb0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f883c35ed40>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f883c35edd0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f883c35ee60>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f883c35eef0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f883c35ef80>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f883c2e4050>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f883c2e40e0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f883c3289c0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,21 +42,21 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1658648662.7210667,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDj/b3EO8s+egULPnKdIb4PZV49FhFJPQAAAAAAAAAALV4rvkSRED/Q1hg+2Yluvqu2gLyUyY49AAAAAAAAAAAAQT299hhOuh5KKzp3b9SzDdh/u8F/RrkAAIA/AACAP01J4T3hiIC6KuF/u9EM2jalm4a5Ki5DtgAAAAAAAIA/TaBVvZ+3bT6K0U894MGSva3VJ71IjUe8AAAAAAAAAABzQZG9yoePP57wEr7m9YW+cA6ivQhrsroAAAAAAAAAAMDMoj7s44I6biQGvKdfjThgAS48osfnOQAAgD8AAIA/Jl9oPuO2qz/SJtM+FOiAvibONj4HRAY9AAAAAAAAAACa7c69sczfPZWiuj2dfUK+FMHKPegMND4AAAAAAAAAADNksr2kQBy5wNPqu9MUKLY7sVi6G/maNQAAAAAAAIA/mmb8vXzZ8z4czp87gH1HvqrcGT4YA8+9AAAAAAAAAADANF0+xC4UvU12hjw/Ciu7ejSCviYBA7wAAIA/AACAP5qdzDsUPJ66ujZUulFLSbXPE9I6W8R0OQAAgD8AAIA/ZlMjPa4Zl7quByE6ad4ONdumfrqmSDq5AACAPwAAgD/mlxM9j9o4usoRQLvv4sw0Tr8Su4XpWzoAAIA/AACAP4DJLD1xjRy5Nj4juncWtLO0e0m7CEtCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +66,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnsuUxPMYUCUhpRSlIwBbJRN6AOMAXSUR0CN6vP3SKFadX2UKGgGaAloD0MI/MdCdAhcCkCUhpRSlGgVS/NoFkdAjfJA/C66KHV9lChoBmgJaA9DCOepDrkZa15AlIaUUpRoFU3oA2gWR0COAEvf0mMPdX2UKGgGaAloD0MIFsH/VrINQkCUhpRSlGgVTWsCaBZHQI4EQ7zTWoZ1fZQoaAZoCWgPQwh1j2yumvNfQJSGlFKUaBVN6ANoFkdAjgVYqPOpsHV9lChoBmgJaA9DCJs6j4r/N1pAlIaUUpRoFU3oA2gWR0COCEsaKk2xdX2UKGgGaAloD0MIhA1PrxRAYECUhpRSlGgVTegDaBZHQI4NSScLBsR1fZQoaAZoCWgPQwj6X65FC41cQJSGlFKUaBVN6ANoFkdAjjxrwOOKfnV9lChoBmgJaA9DCPwZ3qzBrVNAlIaUUpRoFU3oA2gWR0COP6izsyBTdX2UKGgGaAloD0MIDhZO0vxhWECUhpRSlGgVTegDaBZHQI5PScZtNzt1fZQoaAZoCWgPQwiSI52BkRRfQJSGlFKUaBVN6ANoFkdAjlzO+7Dl5nV9lChoBmgJaA9DCAjnU8cq6WdAlIaUUpRoFU3uAWgWR0COXsMPSUkfdX2UKGgGaAloD0MIforjwKu6XUCUhpRSlGgVTegDaBZHQI5kghllK9R1fZQoaAZoCWgPQwh8uOS40/dgQJSGlFKUaBVN6ANoFkdAjmdVK5Cng3V9lChoBmgJaA9DCGeBdocUszrAlIaUUpRoFUvzaBZHQI5yd7MPjGV1fZQoaAZoCWgPQwhs6jwq/qthQJSGlFKUaBVN6ANoFkdAjnbnX2/SIHV9lChoBmgJaA9DCNv3qL9esFlAlIaUUpRoFU3oA2gWR0COfjeXzDoAdX2UKGgGaAloD0MIYw6CjlagWECUhpRSlGgVTegDaBZHQI6EU9wFTvR1fZQoaAZoCWgPQwi0rWad8fkzQJSGlFKUaBVNBAFoFkdAjoeADJU5uXV9lChoBmgJaA9DCJ5A2ClWcVxAlIaUUpRoFU3oA2gWR0COnKrtE5QxdX2UKGgGaAloD0MIGuHtQQgoDMCUhpRSlGgVTQwBaBZHQI6oX5FgDzR1fZQoaAZoCWgPQwjwbfqzH8BfQJSGlFKUaBVN6ANoFkdAjq/gv114gXV9lChoBmgJaA9DCAHbwYh9WlNAlIaUUpRoFU3oA2gWR0COs3MGorFwdX2UKGgGaAloD0MIpkQSvQwZYUCUhpRSlGgVTegDaBZHQI60Zsyi22J1fZQoaAZoCWgPQwhIpG38ie1aQJSGlFKUaBVN6ANoFkdAjrb5zgdfcHV9lChoBmgJaA9DCOqURzfCIVxAlIaUUpRoFU3oA2gWR0COu88QqZtvdX2UKGgGaAloD0MIFygpsADmCsCUhpRSlGgVTSUBaBZHQI7pYbMotth1fZQoaAZoCWgPQwjZmULntfhhQJSGlFKUaBVN6ANoFkdAjulhpQDV6XV9lChoBmgJaA9DCJsdqb7zN01AlIaUUpRoFU3oA2gWR0CO7BFG5MDfdX2UKGgGaAloD0MIpmH4iJgCFECUhpRSlGgVS8VoFkdAju/2DYh+v3V9lChoBmgJaA9DCLadtkYEkyJAlIaUUpRoFU0pAWgWR0CPBFko4MnadX2UKGgGaAloD0MIOe//4wTAYECUhpRSlGgVTegDaBZHQI8F+oo/iYN1fZQoaAZoCWgPQwhbI4JxcJFSQJSGlFKUaBVN6ANoFkdAjweZ6+nIhnV9lChoBmgJaA9DCK+ytike+0FAlIaUUpRoFU0KAWgWR0CPDR9pAUtadX2UKGgGaAloD0MIS8yzktYyYUCUhpRSlGgVTegDaBZHQI8O+YYzi0h1fZQoaAZoCWgPQwgFpP0PMEJgQJSGlFKUaBVN6ANoFkdAjxlM0HhS+HV9lChoBmgJaA9DCAIOoUrNjmFAlIaUUpRoFU3oA2gWR0CPHUh11W8zdX2UKGgGaAloD0MIxw2/m+6HZkCUhpRSlGgVTegDaBZHQI8j/nlnyup1fZQoaAZoCWgPQwiJsyJqIoBgQJSGlFKUaBVN6ANoFkdAjy3jfm9xqHV9lChoBmgJaA9DCAXAeAYNqTrAlIaUUpRoFU11AWgWR0CPNmkxASnMdX2UKGgGaAloD0MIGt6swftCRMCUhpRSlGgVTVYBaBZHQI88LS3LFGZ1fZQoaAZoCWgPQwjzkCkfglNmQJSGlFKUaBVN6ANoFkdAj1A4tpVS43V9lChoBmgJaA9DCD9XW7G/GFtAlIaUUpRoFU3oA2gWR0CPWBLIxQBQdX2UKGgGaAloD0MIVHO5wVA0XUCUhpRSlGgVTegDaBZHQI9crzGxUvR1fZQoaAZoCWgPQwgxXYjVH51QQJSGlFKUaBVN6ANoFkdAj19+3QUpNXV9lChoBmgJaA9DCLPROT/FbV9AlIaUUpRoFU3oA2gWR0CPlDHNHH3ldX2UKGgGaAloD0MI7DNnfcqxUkCUhpRSlGgVTegDaBZHQI+UM/D+BH11fZQoaAZoCWgPQwio34Wt2apZQJSGlFKUaBVN6ANoFkdAj5wfWDpTuXV9lChoBmgJaA9DCJ3Ul6Wd6lJAlIaUUpRoFU3oA2gWR0CPsecFQl8gdX2UKGgGaAloD0MI/rj98snDZUCUhpRSlGgVTdcDaBZHQI+y4oqkM1F1fZQoaAZoCWgPQwiYv0LmyohUQJSGlFKUaBVN6ANoFkdAj7rX1J17pnV9lChoBmgJaA9DCEN0CBwJo15AlIaUUpRoFU3oA2gWR0CPx1pNbkfcdX2UKGgGaAloD0MIxciSOZYfZUCUhpRSlGgVTegDaBZHQI/LwFLWZqp1fZQoaAZoCWgPQwguNxjqMJFjQJSGlFKUaBVN6ANoFkdAj9MU/W1+iXV9lChoBmgJaA9DCMYzaOifrVpAlIaUUpRoFU3oA2gWR0CP3TrsSkCWdX2UKGgGaAloD0MImKPH721KEcCUhpRSlGgVTTYBaBZHQI/khR8+ial1fZQoaAZoCWgPQwj6tmCpLplfQJSGlFKUaBVN6ANoFkdAj+VTvqkdm3V9lChoBmgJaA9DCNBGrptSPElAlIaUUpRoFU3oA2gWR0CP6nLPD50sdX2UKGgGaAloD0MIfQc/cQDTVcCUhpRSlGgVTTsBaBZHQI/w/StvGZN1fZQoaAZoCWgPQwhKl/4lqTFgQJSGlFKUaBVN6ANoFkdAj/vGDL8rJHV9lChoBmgJaA9DCC5W1GCadWZAlIaUUpRoFU3oA2gWR0CQASHJcPe6dX2UKGgGaAloD0MIUn5S7dNdTcCUhpRSlGgVTXABaBZHQJABMzBRAKR1fZQoaAZoCWgPQwgtsp3vp/JaQJSGlFKUaBVN6ANoFkdAkAMfShJyyXV9lChoBmgJaA9DCDrrU47JUGFAlIaUUpRoFU3oA2gWR0CQBFTufEn9dX2UKGgGaAloD0MI6GnAIOlUYECUhpRSlGgVTegDaBZHQJALuFvhqCZ1fZQoaAZoCWgPQwj59q5BX2dcQJSGlFKUaBVN6ANoFkdAkAu6Fh5PdnV9lChoBmgJaA9DCJvj3CbckFNAlIaUUpRoFU3oA2gWR0CQIrNZNfw7dX2UKGgGaAloD0MI/yWpTDEjZUCUhpRSlGgVTegDaBZHQJAwSorFwUB1fZQoaAZoCWgPQwg0TG2pg5dfQJSGlFKUaBVN6ANoFkdAkDDpLqUu+XV9lChoBmgJaA9DCIjxmld1rjVAlIaUUpRoFUv+aBZHQJAyxlAeJYV1fZQoaAZoCWgPQwgx7Zv7q3s9QJSGlFKUaBVN6ANoFkdAkEBZOSGJvnV9lChoBmgJaA9DCMZpiCr8CVtAlIaUUpRoFU3oA2gWR0CQS3IDoyKvdX2UKGgGaAloD0MIya60jNTFXkCUhpRSlGgVTegDaBZHQJBQEA0bcXZ1fZQoaAZoCWgPQwhUbqKW5thXQJSGlFKUaBVN6ANoFkdAkFCI9cKPXHV9lChoBmgJaA9DCMSww5j0XVlAlIaUUpRoFU3oA2gWR0CQU7f2bobGdX2UKGgGaAloD0MIiEm4kEfqWECUhpRSlGgVTegDaBZHQJBXZwOvt+l1fZQoaAZoCWgPQwiPjNXmfxZjQJSGlFKUaBVN6ANoFkdAkF1GhVU+93V9lChoBmgJaA9DCFlMbD6uPRzAlIaUUpRoFU3oA2gWR0CQYLrtmcvvdX2UKGgGaAloD0MIJa/OMSD1X0CUhpRSlGgVTegDaBZHQJBgzO7g88t1fZQoaAZoCWgPQwiXcVMDTa1hQJSGlFKUaBVN6ANoFkdAkGK8NQTEi3V9lChoBmgJaA9DCCzvqgfMMlBAlIaUUpRoFU3oA2gWR0CQY9gdOqNqdX2UKGgGaAloD0MIlNxhE5nlWkCUhpRSlGgVTegDaBZHQJBp6Mzdk8R1fZQoaAZoCWgPQwiHwmfr4EAkwJSGlFKUaBVNMgFoFkdAkGpJ5u63AnV9lChoBmgJaA9DCDZ39L9cRFlAlIaUUpRoFU3oA2gWR0CQf44Z/CqIdX2UKGgGaAloD0MIODEkJxOkWUCUhpRSlGgVTegDaBZHQJCJ160IC2d1fZQoaAZoCWgPQwiazHhb6QBeQJSGlFKUaBVN6ANoFkdAkIpXSKFZgXV9lChoBmgJaA9DCBBaD18mTGZAlIaUUpRoFU3oA2gWR0CQi93AVO9GdX2UKGgGaAloD0MIh2u1h70GXUCUhpRSlGgVTegDaBZHQJCWt0hePaN1fZQoaAZoCWgPQwj1nV+UICZhQJSGlFKUaBVN6ANoFkdAkKAEsSTQmnV9lChoBmgJaA9DCAlwehfv50pAlIaUUpRoFU3oA2gWR0CQpC9V3ljmdX2UKGgGaAloD0MIi28ofDZtY0CUhpRSlGgVTegDaBZHQJCkoOWjXWh1fZQoaAZoCWgPQwglsaTcfZtfQJSGlFKUaBVN6ANoFkdAkKdoF3Y+S3V9lChoBmgJaA9DCLCqXn6nvUdAlIaUUpRoFU0+AWgWR0CQrWu63AmBdX2UKGgGaAloD0MIjPhOzHphXkCUhpRSlGgVTegDaBZHQJCxD1YhdMV1fZQoaAZoCWgPQwiGdePdkWlhQJSGlFKUaBVN6ANoFkdAkLSTMzMzM3V9lChoBmgJaA9DCEEpWrkXQlFAlIaUUpRoFU3oA2gWR0CQtKUrTYukdX2UKGgGaAloD0MIqaCi6lePW0CUhpRSlGgVTegDaBZHQJC2nRCx/ut1fZQoaAZoCWgPQwj5SbVPR/9jQJSGlFKUaBVN6ANoFkdAkLfdihFmWnV9lChoBmgJaA9DCBN/FHXm9mBAlIaUUpRoFU3oA2gWR0CQvyg3tKI0dX2UKGgGaAloD0MIFw6EZAGlQ0CUhpRSlGgVTegDaBZHQJC/pD6WPcV1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,7 +86,7 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f51c6f7f670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51c6f7f700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51c6f7f790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51c6f7f820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f51c6f7f8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f51c6f7f940>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51c6f7f9d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f51c6f7fa60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51c6f7faf0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51c6f7fb80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51c6f7fc10>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f51c6f76c60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 1000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1670707792233779737,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPCMb2U+K4/rkghv9f6rb5ef3Q9zOoZPgAAAAAAAAAAzUxCu96YUT9epyo8Ou9Xv3VgyT0LgRw+AAAAAAAAAADSYg0/zV7/PtvqYT9dyY6/10a8vow2pL0AAAAAAAAAABr2Gz4k3rg/oA79Plv0NL5L6Y6+stVnvgAAAAAAAAAA7Q+LvszuZj/pQkK/QndKv8LYpD5O7y49AAAAAAAAAAAzIWG8NAPCP565n732i5g+KrTdvFrTlb0AAAAAAAAAAB6eM7/URUo/wtG2v9GGhb8KE5g/JiV7PgAAAAAAAAAAY+52v556jz3b9eG/Auakv/l+gz86s7O/AAAAAAAAgD8z3pQ8CamQP3UiyT0dRzi/7TGPvG19yLwAAAAAAAAAAJoBVruSeKY/0gQ3vQ/I+b6Oa6g8I8+TPQAAAAAAAAAAMEeWPpl5oD4iYh0/Fv2wv8pCpr5w8Qu+AAAAAAAAAACNVuI97sugPsLkpb5udbO/z4WuP4Jdsz4AAAAAAAAAAHoVEL92smY9OucbvmH2Lj4jSLc/4EVCPwAAAAAAAAAAs7HvvXBBRj+Lx4O++bB/v8h/1j3NVqM9AAAAAAAAAADGiwA+FzYjP2tWiD7QXIG/Cyo9PdkOur0AAAAAAAAAACYYmL15e74/jwUjv5lSWD64kJM9dqT3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -15.384,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4/viUpWNY8CUhpRSlIwBbJRLT4wBdJRHQEDlQQ+UyHp1fZQoaAZoCWgPQwjuQ95y9fZgwJSGlFKUaBVLRWgWR0BA5iZF5OafdX2UKGgGaAloD0MIqS9LOzXmXcCUhpRSlGgVS31oFkdAQOmsFMZgonV9lChoBmgJaA9DCK3D0VW62l3AlIaUUpRoFUtDaBZHQEDuiRGMGX51fZQoaAZoCWgPQwgB3CxeLIxYwJSGlFKUaBVLTGgWR0BA7uHnEETydX2UKGgGaAloD0MITKWfcHa6V8CUhpRSlGgVSzpoFkdAQO/nyNGViXV9lChoBmgJaA9DCJ+wxAOKRHfAlIaUUpRoFUtJaBZHQED0KtxMnJF1fZQoaAZoCWgPQwijrUoi+65bwJSGlFKUaBVLSGgWR0BA9Qu/UONHdX2UKGgGaAloD0MIMLq8OVyoUcCUhpRSlGgVS0hoFkdAQPbPldTo+3V9lChoBmgJaA9DCKIMVTGVbF/AlIaUUpRoFUtcaBZHQED3hESdvsJ1fZQoaAZoCWgPQwgVrHE2HctawJSGlFKUaBVLUWgWR0BA+GHxjJ+2dX2UKGgGaAloD0MIFNGvrV9LcsCUhpRSlGgVS2RoFkdAQPv6oESuhnV9lChoBmgJaA9DCNm0UghkM2zAlIaUUpRoFUtnaBZHQED/M1TBInV1fZQoaAZoCWgPQwiSzyueemFvwJSGlFKUaBVLXGgWR0BBAqAJ9iMHdX2UKGgGaAloD0MIHa9A9KQZXsCUhpRSlGgVS31oFkdAQQh+H8CPqHV9lChoBmgJaA9DCNB/D167VFPAlIaUUpRoFUs6aBZHQEEI+zMRpUR1fZQoaAZoCWgPQwiEoKNVrVxqwJSGlFKUaBVLQ2gWR0BBC7dJrcj8dX2UKGgGaAloD0MISdi3kwivccCUhpRSlGgVS1BoFkdAQQyn3ta6jHV9lChoBmgJaA9DCM7eGW0Vn3DAlIaUUpRoFUtfaBZHQEEO9bor4Fl1fZQoaAZoCWgPQwgapyGqcDtkwJSGlFKUaBVLSGgWR0BBF3pwCKaYdX2UKGgGaAloD0MIeuOkMO9OWcCUhpRSlGgVS01oFkdAQRqaLGaQWHV9lChoBmgJaA9DCDsYsU8AqF7AlIaUUpRoFUuDaBZHQEEcl1KXfIl1fZQoaAZoCWgPQwg4S8lyEpVgwJSGlFKUaBVLXGgWR0BBHvMB6rvLdX2UKGgGaAloD0MIXtcv2E3jc8CUhpRSlGgVS2toFkdAQR+BWgezU3V9lChoBmgJaA9DCOAPP/896ljAlIaUUpRoFUtSaBZHQEEh0voNd7h1fZQoaAZoCWgPQwiQZcHEHwk0QJSGlFKUaBVLhWgWR0BBInWattALdX2UKGgGaAloD0MIwy6KHvhbVcCUhpRSlGgVS2loFkdAQSgkxASnL3V9lChoBmgJaA9DCNe9FYkJIWXAlIaUUpRoFUuBaBZHQEEueAd4mkZ1fZQoaAZoCWgPQwj2tMNfkzpjwJSGlFKUaBVLVGgWR0BBMn3lCCz1dX2UKGgGaAloD0MIn+QOm4isdMCUhpRSlGgVS2RoFkdAQTeCAc1fmnV9lChoBmgJaA9DCDY7Un0n7HTAlIaUUpRoFUs6aBZHQEE6C8OCoTB1fZQoaAZoCWgPQwgLz0vFRm1iwJSGlFKUaBVLcGgWR0BBPP3i704BdX2UKGgGaAloD0MIpkdTPRkWY8CUhpRSlGgVS4VoFkdAQTzXFtKqXHV9lChoBmgJaA9DCBYYsrrVw0TAlIaUUpRoFUtIaBZHQEFALEUCaJB1fZQoaAZoCWgPQwjni70XX6dbwJSGlFKUaBVLhGgWR0BBQDnFHavidX2UKGgGaAloD0MImSuDaoN0XcCUhpRSlGgVS2toFkdAQUFqpLmITHV9lChoBmgJaA9DCFZHjnSGNW7AlIaUUpRoFUtxaBZHQEFB2mHgxah1fZQoaAZoCWgPQwgtBaT9D6VUwJSGlFKUaBVLVWgWR0BBQfaQFLWadX2UKGgGaAloD0MI/8u1aEEnccCUhpRSlGgVS2VoFkdAQUXJiiItUXV9lChoBmgJaA9DCFjhlo8kgHTAlIaUUpRoFUtjaBZHQEFJXPqs2eh1fZQoaAZoCWgPQwiEKjV7oPBYwJSGlFKUaBVLQGgWR0BBS5Gax5cDdX2UKGgGaAloD0MI12t6UFBtWsCUhpRSlGgVSzxoFkdAQVIGB4D9wXV9lChoBmgJaA9DCIyGjEepilLAlIaUUpRoFUtAaBZHQEFV+x4Y77t1fZQoaAZoCWgPQwjS/ZyC/MlrwJSGlFKUaBVLeWgWR0BBV+gte2NOdX2UKGgGaAloD0MI12t6UFAFXMCUhpRSlGgVSz1oFkdAQVwHTqjaf3V9lChoBmgJaA9DCLHDmPR38mjAlIaUUpRoFUuAaBZHQEFbpTuOS4h1fZQoaAZoCWgPQwix+47hMTNowJSGlFKUaBVLfWgWR0BBYF+3H7xedX2UKGgGaAloD0MIxk54CU6UZ8CUhpRSlGgVS09oFkdAQWLRtxdY4nV9lChoBmgJaA9DCNCZtKk6QWvAlIaUUpRoFUtwaBZHQEFlVinYQJ51fZQoaAZoCWgPQwjyJVRwuDBywJSGlFKUaBVLV2gWR0BBZ6y0KJEZdX2UKGgGaAloD0MI6LzGLlElM8CUhpRSlGgVS2loFkdAQWuVNYbKinV9lChoBmgJaA9DCEg3wqKiqmDAlIaUUpRoFUtqaBZHQEFr4nF5v991fZQoaAZoCWgPQwgZqfdUDkp0wJSGlFKUaBVLYGgWR0BBbFpfx+a0dX2UKGgGaAloD0MIa2EW2jmaa8CUhpRSlGgVS05oFkdAQW7SVnmJWXV9lChoBmgJaA9DCA8om3KFtl3AlIaUUpRoFUtMaBZHQEF0XTEzfrN1fZQoaAZoCWgPQwhlijkIOtpawJSGlFKUaBVLZGgWR0BBdhMrVe8gdX2UKGgGaAloD0MIhq3Zyku+VMCUhpRSlGgVS3FoFkdAQXfssxwhn3V9lChoBmgJaA9DCBjuXBjptl/AlIaUUpRoFUt/aBZHQEF4bMotthx1fZQoaAZoCWgPQwiLbyh8tjREwJSGlFKUaBVLQWgWR0BBeY6fapPzdX2UKGgGaAloD0MI9iSwOQdFXMCUhpRSlGgVSz5oFkdAQXv3vhIe5nV9lChoBmgJaA9DCEMAcOzZIWfAlIaUUpRoFUtDaBZHQEGChzvJA+p1fZQoaAZoCWgPQwi69C9JZRJZwJSGlFKUaBVLYGgWR0BBgneBQN1AdX2UKGgGaAloD0MIrfnxlxYjXsCUhpRSlGgVS21oFkdAQYam65Gz8nV9lChoBmgJaA9DCEEqxY7Gj3TAlIaUUpRoFUtKaBZHQEGMIPbwjMV1fZQoaAZoCWgPQwghlWJH49VXwJSGlFKUaBVLQ2gWR0BBjCblRxcWdX2UKGgGaAloD0MIO6xwy0d7YMCUhpRSlGgVS25oFkdAQY0Gmk30gHV9lChoBmgJaA9DCO54k9+ikFzAlIaUUpRoFUtgaBZHQEGN07KaG6B1fZQoaAZoCWgPQwidSDDVzNRrwJSGlFKUaBVLPmgWR0BBkBFNL128dX2UKGgGaAloD0MIcLGiBlNrYsCUhpRSlGgVS0FoFkdAQZYGD+R5knV9lChoBmgJaA9DCE/pYP0fNWHAlIaUUpRoFUtlaBZHQEGZ01ZTyax1fZQoaAZoCWgPQwjltKfkHDFjwJSGlFKUaBVLSWgWR0BBnWUKRdQgdX2UKGgGaAloD0MIaMwk6sWVgMCUhpRSlGgVS3JoFkdAQZ9ocrAgxXV9lChoBmgJaA9DCB10CYdeGHHAlIaUUpRoFUtcaBZHQEGgCYkVvdd1fZQoaAZoCWgPQwgt7GmHP91owJSGlFKUaBVLSGgWR0BBpEn1FpfydX2UKGgGaAloD0MI2iCTjJz6dsCUhpRSlGgVS2JoFkdAQaYexOclPnV9lChoBmgJaA9DCBuADYjQ63bAlIaUUpRoFUuQaBZHQEGowPAfuCx1fZQoaAZoCWgPQwhMbhRZK4NzwJSGlFKUaBVLVGgWR0BBqXJ5mh/RdX2UKGgGaAloD0MI2XbaGhE0WMCUhpRSlGgVS39oFkdAQbF/rjYI0XV9lChoBmgJaA9DCLhZvFgYR1DAlIaUUpRoFUtQaBZHQEGyYKIBRyh1fZQoaAZoCWgPQwgjaw2l9uJYwJSGlFKUaBVLTWgWR0BBs03n6l+FdX2UKGgGaAloD0MIsDvdeeLtTcCUhpRSlGgVS0VoFkdAQbTollbu+nV9lChoBmgJaA9DCACrI0c6r1nAlIaUUpRoFUtbaBZHQEG1544ZMtd1fZQoaAZoCWgPQwjshJfg1BZUwJSGlFKUaBVLaWgWR0BBtqEOAiFCdX2UKGgGaAloD0MIVMiVehaETMCUhpRSlGgVS0JoFkdAQbrviLl3hXV9lChoBmgJaA9DCLDkKha/kGXAlIaUUpRoFUtAaBZHQEG7+DvmYBx1fZQoaAZoCWgPQwiQFmcMc3JswJSGlFKUaBVLTGgWR0BBvAFxGUfQdX2UKGgGaAloD0MIAaJgxlSGdcCUhpRSlGgVS2doFkdAQbvustCiRHV9lChoBmgJaA9DCK7VHvZCBVfAlIaUUpRoFUtNaBZHQEHBt3wCr951fZQoaAZoCWgPQwgV/aGZJy9dwJSGlFKUaBVLeGgWR0BBwl3yI55rdX2UKGgGaAloD0MI02uzsZI/cMCUhpRSlGgVS1VoFkdAQcp4hUzbe3V9lChoBmgJaA9DCLnH0oeuxHTAlIaUUpRoFUtlaBZHQEHPz5oGpuN1fZQoaAZoCWgPQwiv0t11NpdbwJSGlFKUaBVLYGgWR0BB0yXlbNbDdX2UKGgGaAloD0MIDf/pBopwYMCUhpRSlGgVS0loFkdAQdSDyvs7dXV9lChoBmgJaA9DCMhcGVRb83XAlIaUUpRoFUtVaBZHQEHWXokiUxF1fZQoaAZoCWgPQwhQHEC/72d4wJSGlFKUaBVLVmgWR0BB22GqPwNLdX2UKGgGaAloD0MIpu1fWemdbcCUhpRSlGgVS1VoFkdAQeM1Muez2XV9lChoBmgJaA9DCEuQEVBhPG3AlIaUUpRoFUtbaBZHQEHlGBFuvU11fZQoaAZoCWgPQwgMAcCxZz9swJSGlFKUaBVLcGgWR0BB5doWYWtVdX2UKGgGaAloD0MIfxe2ZqsNYsCUhpRSlGgVS2doFkdAQeZxtHhCMXV9lChoBmgJaA9DCI5bzM/N0nLAlIaUUpRoFUuNaBZHQEHpgH/tICl1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 4,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c77baf650d1ae1fa011d52b09c8d9ca4c85439416c22339c1b4fb4765c16f01
3
- size 87865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60150da095745e8e411b80005948d85bb275cf88f533beddbbb13c3d0174f35e
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dff9c7271cf0ff1f4acda0531be64de028fee03de797c85c82b8bc36c3711ee3
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b83ddba92a5d56c61518b77264945af6ce816d89575f10ec03a2ce201518066
3
  size 43201
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.6.0
4
- PyTorch: 1.12.0+cu113
5
  GPU Enabled: True
6
  Numpy: 1.21.6
7
  Gym: 0.21.0
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
  GPU Enabled: True
6
  Numpy: 1.21.6
7
  Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 164.57916732892068, "std_reward": 87.78331703430844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T08:09:11.980080"}
 
1
+ {"mean_reward": -130.48377214688807, "std_reward": 93.26447352765324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T21:31:24.736661"}