utyug1 commited on
Commit
668392a
·
1 Parent(s): d778ceb

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 164.58 +/- 87.78
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f883c35eb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f883c35eb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f883c35ec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f883c35ecb0>", "_build": "<function ActorCriticPolicy._build at 0x7f883c35ed40>", "forward": "<function ActorCriticPolicy.forward at 0x7f883c35edd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f883c35ee60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f883c35eef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f883c35ef80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f883c2e4050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f883c2e40e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f883c3289c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658648662.7210667, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDj/b3EO8s+egULPnKdIb4PZV49FhFJPQAAAAAAAAAALV4rvkSRED/Q1hg+2Yluvqu2gLyUyY49AAAAAAAAAAAAQT299hhOuh5KKzp3b9SzDdh/u8F/RrkAAIA/AACAP01J4T3hiIC6KuF/u9EM2jalm4a5Ki5DtgAAAAAAAIA/TaBVvZ+3bT6K0U894MGSva3VJ71IjUe8AAAAAAAAAABzQZG9yoePP57wEr7m9YW+cA6ivQhrsroAAAAAAAAAAMDMoj7s44I6biQGvKdfjThgAS48osfnOQAAgD8AAIA/Jl9oPuO2qz/SJtM+FOiAvibONj4HRAY9AAAAAAAAAACa7c69sczfPZWiuj2dfUK+FMHKPegMND4AAAAAAAAAADNksr2kQBy5wNPqu9MUKLY7sVi6G/maNQAAAAAAAIA/mmb8vXzZ8z4czp87gH1HvqrcGT4YA8+9AAAAAAAAAADANF0+xC4UvU12hjw/Ciu7ejSCviYBA7wAAIA/AACAP5qdzDsUPJ66ujZUulFLSbXPE9I6W8R0OQAAgD8AAIA/ZlMjPa4Zl7quByE6ad4ONdumfrqmSDq5AACAPwAAgD/mlxM9j9o4usoRQLvv4sw0Tr8Su4XpWzoAAIA/AACAP4DJLD1xjRy5Nj4juncWtLO0e0m7CEtCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnsuUxPMYUCUhpRSlIwBbJRN6AOMAXSUR0CN6vP3SKFadX2UKGgGaAloD0MI/MdCdAhcCkCUhpRSlGgVS/NoFkdAjfJA/C66KHV9lChoBmgJaA9DCOepDrkZa15AlIaUUpRoFU3oA2gWR0COAEvf0mMPdX2UKGgGaAloD0MIFsH/VrINQkCUhpRSlGgVTWsCaBZHQI4EQ7zTWoZ1fZQoaAZoCWgPQwh1j2yumvNfQJSGlFKUaBVN6ANoFkdAjgVYqPOpsHV9lChoBmgJaA9DCJs6j4r/N1pAlIaUUpRoFU3oA2gWR0COCEsaKk2xdX2UKGgGaAloD0MIhA1PrxRAYECUhpRSlGgVTegDaBZHQI4NSScLBsR1fZQoaAZoCWgPQwj6X65FC41cQJSGlFKUaBVN6ANoFkdAjjxrwOOKfnV9lChoBmgJaA9DCPwZ3qzBrVNAlIaUUpRoFU3oA2gWR0COP6izsyBTdX2UKGgGaAloD0MIDhZO0vxhWECUhpRSlGgVTegDaBZHQI5PScZtNzt1fZQoaAZoCWgPQwiSI52BkRRfQJSGlFKUaBVN6ANoFkdAjlzO+7Dl5nV9lChoBmgJaA9DCAjnU8cq6WdAlIaUUpRoFU3uAWgWR0COXsMPSUkfdX2UKGgGaAloD0MIforjwKu6XUCUhpRSlGgVTegDaBZHQI5kghllK9R1fZQoaAZoCWgPQwh8uOS40/dgQJSGlFKUaBVN6ANoFkdAjmdVK5Cng3V9lChoBmgJaA9DCGeBdocUszrAlIaUUpRoFUvzaBZHQI5yd7MPjGV1fZQoaAZoCWgPQwhs6jwq/qthQJSGlFKUaBVN6ANoFkdAjnbnX2/SIHV9lChoBmgJaA9DCNv3qL9esFlAlIaUUpRoFU3oA2gWR0COfjeXzDoAdX2UKGgGaAloD0MIYw6CjlagWECUhpRSlGgVTegDaBZHQI6EU9wFTvR1fZQoaAZoCWgPQwi0rWad8fkzQJSGlFKUaBVNBAFoFkdAjoeADJU5uXV9lChoBmgJaA9DCJ5A2ClWcVxAlIaUUpRoFU3oA2gWR0COnKrtE5QxdX2UKGgGaAloD0MIGuHtQQgoDMCUhpRSlGgVTQwBaBZHQI6oX5FgDzR1fZQoaAZoCWgPQwjwbfqzH8BfQJSGlFKUaBVN6ANoFkdAjq/gv114gXV9lChoBmgJaA9DCAHbwYh9WlNAlIaUUpRoFU3oA2gWR0COs3MGorFwdX2UKGgGaAloD0MIpkQSvQwZYUCUhpRSlGgVTegDaBZHQI60Zsyi22J1fZQoaAZoCWgPQwhIpG38ie1aQJSGlFKUaBVN6ANoFkdAjrb5zgdfcHV9lChoBmgJaA9DCOqURzfCIVxAlIaUUpRoFU3oA2gWR0COu88QqZtvdX2UKGgGaAloD0MIFygpsADmCsCUhpRSlGgVTSUBaBZHQI7pYbMotth1fZQoaAZoCWgPQwjZmULntfhhQJSGlFKUaBVN6ANoFkdAjulhpQDV6XV9lChoBmgJaA9DCJsdqb7zN01AlIaUUpRoFU3oA2gWR0CO7BFG5MDfdX2UKGgGaAloD0MIpmH4iJgCFECUhpRSlGgVS8VoFkdAju/2DYh+v3V9lChoBmgJaA9DCLadtkYEkyJAlIaUUpRoFU0pAWgWR0CPBFko4MnadX2UKGgGaAloD0MIOe//4wTAYECUhpRSlGgVTegDaBZHQI8F+oo/iYN1fZQoaAZoCWgPQwhbI4JxcJFSQJSGlFKUaBVN6ANoFkdAjweZ6+nIhnV9lChoBmgJaA9DCK+ytike+0FAlIaUUpRoFU0KAWgWR0CPDR9pAUtadX2UKGgGaAloD0MIS8yzktYyYUCUhpRSlGgVTegDaBZHQI8O+YYzi0h1fZQoaAZoCWgPQwgFpP0PMEJgQJSGlFKUaBVN6ANoFkdAjxlM0HhS+HV9lChoBmgJaA9DCAIOoUrNjmFAlIaUUpRoFU3oA2gWR0CPHUh11W8zdX2UKGgGaAloD0MIxw2/m+6HZkCUhpRSlGgVTegDaBZHQI8j/nlnyup1fZQoaAZoCWgPQwiJsyJqIoBgQJSGlFKUaBVN6ANoFkdAjy3jfm9xqHV9lChoBmgJaA9DCAXAeAYNqTrAlIaUUpRoFU11AWgWR0CPNmkxASnMdX2UKGgGaAloD0MIGt6swftCRMCUhpRSlGgVTVYBaBZHQI88LS3LFGZ1fZQoaAZoCWgPQwjzkCkfglNmQJSGlFKUaBVN6ANoFkdAj1A4tpVS43V9lChoBmgJaA9DCD9XW7G/GFtAlIaUUpRoFU3oA2gWR0CPWBLIxQBQdX2UKGgGaAloD0MIVHO5wVA0XUCUhpRSlGgVTegDaBZHQI9crzGxUvR1fZQoaAZoCWgPQwgxXYjVH51QQJSGlFKUaBVN6ANoFkdAj19+3QUpNXV9lChoBmgJaA9DCLPROT/FbV9AlIaUUpRoFU3oA2gWR0CPlDHNHH3ldX2UKGgGaAloD0MI7DNnfcqxUkCUhpRSlGgVTegDaBZHQI+UM/D+BH11fZQoaAZoCWgPQwio34Wt2apZQJSGlFKUaBVN6ANoFkdAj5wfWDpTuXV9lChoBmgJaA9DCJ3Ul6Wd6lJAlIaUUpRoFU3oA2gWR0CPsecFQl8gdX2UKGgGaAloD0MI/rj98snDZUCUhpRSlGgVTdcDaBZHQI+y4oqkM1F1fZQoaAZoCWgPQwiYv0LmyohUQJSGlFKUaBVN6ANoFkdAj7rX1J17pnV9lChoBmgJaA9DCEN0CBwJo15AlIaUUpRoFU3oA2gWR0CPx1pNbkfcdX2UKGgGaAloD0MIxciSOZYfZUCUhpRSlGgVTegDaBZHQI/LwFLWZqp1fZQoaAZoCWgPQwguNxjqMJFjQJSGlFKUaBVN6ANoFkdAj9MU/W1+iXV9lChoBmgJaA9DCMYzaOifrVpAlIaUUpRoFU3oA2gWR0CP3TrsSkCWdX2UKGgGaAloD0MImKPH721KEcCUhpRSlGgVTTYBaBZHQI/khR8+ial1fZQoaAZoCWgPQwj6tmCpLplfQJSGlFKUaBVN6ANoFkdAj+VTvqkdm3V9lChoBmgJaA9DCNBGrptSPElAlIaUUpRoFU3oA2gWR0CP6nLPD50sdX2UKGgGaAloD0MIfQc/cQDTVcCUhpRSlGgVTTsBaBZHQI/w/StvGZN1fZQoaAZoCWgPQwhKl/4lqTFgQJSGlFKUaBVN6ANoFkdAj/vGDL8rJHV9lChoBmgJaA9DCC5W1GCadWZAlIaUUpRoFU3oA2gWR0CQASHJcPe6dX2UKGgGaAloD0MIUn5S7dNdTcCUhpRSlGgVTXABaBZHQJABMzBRAKR1fZQoaAZoCWgPQwgtsp3vp/JaQJSGlFKUaBVN6ANoFkdAkAMfShJyyXV9lChoBmgJaA9DCDrrU47JUGFAlIaUUpRoFU3oA2gWR0CQBFTufEn9dX2UKGgGaAloD0MI6GnAIOlUYECUhpRSlGgVTegDaBZHQJALuFvhqCZ1fZQoaAZoCWgPQwj59q5BX2dcQJSGlFKUaBVN6ANoFkdAkAu6Fh5PdnV9lChoBmgJaA9DCJvj3CbckFNAlIaUUpRoFU3oA2gWR0CQIrNZNfw7dX2UKGgGaAloD0MI/yWpTDEjZUCUhpRSlGgVTegDaBZHQJAwSorFwUB1fZQoaAZoCWgPQwg0TG2pg5dfQJSGlFKUaBVN6ANoFkdAkDDpLqUu+XV9lChoBmgJaA9DCIjxmld1rjVAlIaUUpRoFUv+aBZHQJAyxlAeJYV1fZQoaAZoCWgPQwgx7Zv7q3s9QJSGlFKUaBVN6ANoFkdAkEBZOSGJvnV9lChoBmgJaA9DCMZpiCr8CVtAlIaUUpRoFU3oA2gWR0CQS3IDoyKvdX2UKGgGaAloD0MIya60jNTFXkCUhpRSlGgVTegDaBZHQJBQEA0bcXZ1fZQoaAZoCWgPQwhUbqKW5thXQJSGlFKUaBVN6ANoFkdAkFCI9cKPXHV9lChoBmgJaA9DCMSww5j0XVlAlIaUUpRoFU3oA2gWR0CQU7f2bobGdX2UKGgGaAloD0MIiEm4kEfqWECUhpRSlGgVTegDaBZHQJBXZwOvt+l1fZQoaAZoCWgPQwiPjNXmfxZjQJSGlFKUaBVN6ANoFkdAkF1GhVU+93V9lChoBmgJaA9DCFlMbD6uPRzAlIaUUpRoFU3oA2gWR0CQYLrtmcvvdX2UKGgGaAloD0MIJa/OMSD1X0CUhpRSlGgVTegDaBZHQJBgzO7g88t1fZQoaAZoCWgPQwiXcVMDTa1hQJSGlFKUaBVN6ANoFkdAkGK8NQTEi3V9lChoBmgJaA9DCCzvqgfMMlBAlIaUUpRoFU3oA2gWR0CQY9gdOqNqdX2UKGgGaAloD0MIlNxhE5nlWkCUhpRSlGgVTegDaBZHQJBp6Mzdk8R1fZQoaAZoCWgPQwiHwmfr4EAkwJSGlFKUaBVNMgFoFkdAkGpJ5u63AnV9lChoBmgJaA9DCDZ39L9cRFlAlIaUUpRoFU3oA2gWR0CQf44Z/CqIdX2UKGgGaAloD0MIODEkJxOkWUCUhpRSlGgVTegDaBZHQJCJ160IC2d1fZQoaAZoCWgPQwiazHhb6QBeQJSGlFKUaBVN6ANoFkdAkIpXSKFZgXV9lChoBmgJaA9DCBBaD18mTGZAlIaUUpRoFU3oA2gWR0CQi93AVO9GdX2UKGgGaAloD0MIh2u1h70GXUCUhpRSlGgVTegDaBZHQJCWt0hePaN1fZQoaAZoCWgPQwj1nV+UICZhQJSGlFKUaBVN6ANoFkdAkKAEsSTQmnV9lChoBmgJaA9DCAlwehfv50pAlIaUUpRoFU3oA2gWR0CQpC9V3ljmdX2UKGgGaAloD0MIi28ofDZtY0CUhpRSlGgVTegDaBZHQJCkoOWjXWh1fZQoaAZoCWgPQwglsaTcfZtfQJSGlFKUaBVN6ANoFkdAkKdoF3Y+S3V9lChoBmgJaA9DCLCqXn6nvUdAlIaUUpRoFU0+AWgWR0CQrWu63AmBdX2UKGgGaAloD0MIjPhOzHphXkCUhpRSlGgVTegDaBZHQJCxD1YhdMV1fZQoaAZoCWgPQwiGdePdkWlhQJSGlFKUaBVN6ANoFkdAkLSTMzMzM3V9lChoBmgJaA9DCEEpWrkXQlFAlIaUUpRoFU3oA2gWR0CQtKUrTYukdX2UKGgGaAloD0MIqaCi6lePW0CUhpRSlGgVTegDaBZHQJC2nRCx/ut1fZQoaAZoCWgPQwj5SbVPR/9jQJSGlFKUaBVN6ANoFkdAkLfdihFmWnV9lChoBmgJaA9DCBN/FHXm9mBAlIaUUpRoFU3oA2gWR0CQvyg3tKI0dX2UKGgGaAloD0MIFw6EZAGlQ0CUhpRSlGgVTegDaBZHQJC/pD6WPcV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d24509d5547123adbcc8ed39e64607b146b2ee08448e22bd613900b89b96e696
3
+ size 147140
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f883c35eb00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f883c35eb90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f883c35ec20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f883c35ecb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f883c35ed40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f883c35edd0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f883c35ee60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f883c35eef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f883c35ef80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f883c2e4050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f883c2e40e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f883c3289c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1658648662.7210667,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDj/b3EO8s+egULPnKdIb4PZV49FhFJPQAAAAAAAAAALV4rvkSRED/Q1hg+2Yluvqu2gLyUyY49AAAAAAAAAAAAQT299hhOuh5KKzp3b9SzDdh/u8F/RrkAAIA/AACAP01J4T3hiIC6KuF/u9EM2jalm4a5Ki5DtgAAAAAAAIA/TaBVvZ+3bT6K0U894MGSva3VJ71IjUe8AAAAAAAAAABzQZG9yoePP57wEr7m9YW+cA6ivQhrsroAAAAAAAAAAMDMoj7s44I6biQGvKdfjThgAS48osfnOQAAgD8AAIA/Jl9oPuO2qz/SJtM+FOiAvibONj4HRAY9AAAAAAAAAACa7c69sczfPZWiuj2dfUK+FMHKPegMND4AAAAAAAAAADNksr2kQBy5wNPqu9MUKLY7sVi6G/maNQAAAAAAAIA/mmb8vXzZ8z4czp87gH1HvqrcGT4YA8+9AAAAAAAAAADANF0+xC4UvU12hjw/Ciu7ejSCviYBA7wAAIA/AACAP5qdzDsUPJ66ujZUulFLSbXPE9I6W8R0OQAAgD8AAIA/ZlMjPa4Zl7quByE6ad4ONdumfrqmSDq5AACAPwAAgD/mlxM9j9o4usoRQLvv4sw0Tr8Su4XpWzoAAIA/AACAP4DJLD1xjRy5Nj4juncWtLO0e0m7CEtCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnsuUxPMYUCUhpRSlIwBbJRN6AOMAXSUR0CN6vP3SKFadX2UKGgGaAloD0MI/MdCdAhcCkCUhpRSlGgVS/NoFkdAjfJA/C66KHV9lChoBmgJaA9DCOepDrkZa15AlIaUUpRoFU3oA2gWR0COAEvf0mMPdX2UKGgGaAloD0MIFsH/VrINQkCUhpRSlGgVTWsCaBZHQI4EQ7zTWoZ1fZQoaAZoCWgPQwh1j2yumvNfQJSGlFKUaBVN6ANoFkdAjgVYqPOpsHV9lChoBmgJaA9DCJs6j4r/N1pAlIaUUpRoFU3oA2gWR0COCEsaKk2xdX2UKGgGaAloD0MIhA1PrxRAYECUhpRSlGgVTegDaBZHQI4NSScLBsR1fZQoaAZoCWgPQwj6X65FC41cQJSGlFKUaBVN6ANoFkdAjjxrwOOKfnV9lChoBmgJaA9DCPwZ3qzBrVNAlIaUUpRoFU3oA2gWR0COP6izsyBTdX2UKGgGaAloD0MIDhZO0vxhWECUhpRSlGgVTegDaBZHQI5PScZtNzt1fZQoaAZoCWgPQwiSI52BkRRfQJSGlFKUaBVN6ANoFkdAjlzO+7Dl5nV9lChoBmgJaA9DCAjnU8cq6WdAlIaUUpRoFU3uAWgWR0COXsMPSUkfdX2UKGgGaAloD0MIforjwKu6XUCUhpRSlGgVTegDaBZHQI5kghllK9R1fZQoaAZoCWgPQwh8uOS40/dgQJSGlFKUaBVN6ANoFkdAjmdVK5Cng3V9lChoBmgJaA9DCGeBdocUszrAlIaUUpRoFUvzaBZHQI5yd7MPjGV1fZQoaAZoCWgPQwhs6jwq/qthQJSGlFKUaBVN6ANoFkdAjnbnX2/SIHV9lChoBmgJaA9DCNv3qL9esFlAlIaUUpRoFU3oA2gWR0COfjeXzDoAdX2UKGgGaAloD0MIYw6CjlagWECUhpRSlGgVTegDaBZHQI6EU9wFTvR1fZQoaAZoCWgPQwi0rWad8fkzQJSGlFKUaBVNBAFoFkdAjoeADJU5uXV9lChoBmgJaA9DCJ5A2ClWcVxAlIaUUpRoFU3oA2gWR0COnKrtE5QxdX2UKGgGaAloD0MIGuHtQQgoDMCUhpRSlGgVTQwBaBZHQI6oX5FgDzR1fZQoaAZoCWgPQwjwbfqzH8BfQJSGlFKUaBVN6ANoFkdAjq/gv114gXV9lChoBmgJaA9DCAHbwYh9WlNAlIaUUpRoFU3oA2gWR0COs3MGorFwdX2UKGgGaAloD0MIpkQSvQwZYUCUhpRSlGgVTegDaBZHQI60Zsyi22J1fZQoaAZoCWgPQwhIpG38ie1aQJSGlFKUaBVN6ANoFkdAjrb5zgdfcHV9lChoBmgJaA9DCOqURzfCIVxAlIaUUpRoFU3oA2gWR0COu88QqZtvdX2UKGgGaAloD0MIFygpsADmCsCUhpRSlGgVTSUBaBZHQI7pYbMotth1fZQoaAZoCWgPQwjZmULntfhhQJSGlFKUaBVN6ANoFkdAjulhpQDV6XV9lChoBmgJaA9DCJsdqb7zN01AlIaUUpRoFU3oA2gWR0CO7BFG5MDfdX2UKGgGaAloD0MIpmH4iJgCFECUhpRSlGgVS8VoFkdAju/2DYh+v3V9lChoBmgJaA9DCLadtkYEkyJAlIaUUpRoFU0pAWgWR0CPBFko4MnadX2UKGgGaAloD0MIOe//4wTAYECUhpRSlGgVTegDaBZHQI8F+oo/iYN1fZQoaAZoCWgPQwhbI4JxcJFSQJSGlFKUaBVN6ANoFkdAjweZ6+nIhnV9lChoBmgJaA9DCK+ytike+0FAlIaUUpRoFU0KAWgWR0CPDR9pAUtadX2UKGgGaAloD0MIS8yzktYyYUCUhpRSlGgVTegDaBZHQI8O+YYzi0h1fZQoaAZoCWgPQwgFpP0PMEJgQJSGlFKUaBVN6ANoFkdAjxlM0HhS+HV9lChoBmgJaA9DCAIOoUrNjmFAlIaUUpRoFU3oA2gWR0CPHUh11W8zdX2UKGgGaAloD0MIxw2/m+6HZkCUhpRSlGgVTegDaBZHQI8j/nlnyup1fZQoaAZoCWgPQwiJsyJqIoBgQJSGlFKUaBVN6ANoFkdAjy3jfm9xqHV9lChoBmgJaA9DCAXAeAYNqTrAlIaUUpRoFU11AWgWR0CPNmkxASnMdX2UKGgGaAloD0MIGt6swftCRMCUhpRSlGgVTVYBaBZHQI88LS3LFGZ1fZQoaAZoCWgPQwjzkCkfglNmQJSGlFKUaBVN6ANoFkdAj1A4tpVS43V9lChoBmgJaA9DCD9XW7G/GFtAlIaUUpRoFU3oA2gWR0CPWBLIxQBQdX2UKGgGaAloD0MIVHO5wVA0XUCUhpRSlGgVTegDaBZHQI9crzGxUvR1fZQoaAZoCWgPQwgxXYjVH51QQJSGlFKUaBVN6ANoFkdAj19+3QUpNXV9lChoBmgJaA9DCLPROT/FbV9AlIaUUpRoFU3oA2gWR0CPlDHNHH3ldX2UKGgGaAloD0MI7DNnfcqxUkCUhpRSlGgVTegDaBZHQI+UM/D+BH11fZQoaAZoCWgPQwio34Wt2apZQJSGlFKUaBVN6ANoFkdAj5wfWDpTuXV9lChoBmgJaA9DCJ3Ul6Wd6lJAlIaUUpRoFU3oA2gWR0CPsecFQl8gdX2UKGgGaAloD0MI/rj98snDZUCUhpRSlGgVTdcDaBZHQI+y4oqkM1F1fZQoaAZoCWgPQwiYv0LmyohUQJSGlFKUaBVN6ANoFkdAj7rX1J17pnV9lChoBmgJaA9DCEN0CBwJo15AlIaUUpRoFU3oA2gWR0CPx1pNbkfcdX2UKGgGaAloD0MIxciSOZYfZUCUhpRSlGgVTegDaBZHQI/LwFLWZqp1fZQoaAZoCWgPQwguNxjqMJFjQJSGlFKUaBVN6ANoFkdAj9MU/W1+iXV9lChoBmgJaA9DCMYzaOifrVpAlIaUUpRoFU3oA2gWR0CP3TrsSkCWdX2UKGgGaAloD0MImKPH721KEcCUhpRSlGgVTTYBaBZHQI/khR8+ial1fZQoaAZoCWgPQwj6tmCpLplfQJSGlFKUaBVN6ANoFkdAj+VTvqkdm3V9lChoBmgJaA9DCNBGrptSPElAlIaUUpRoFU3oA2gWR0CP6nLPD50sdX2UKGgGaAloD0MIfQc/cQDTVcCUhpRSlGgVTTsBaBZHQI/w/StvGZN1fZQoaAZoCWgPQwhKl/4lqTFgQJSGlFKUaBVN6ANoFkdAj/vGDL8rJHV9lChoBmgJaA9DCC5W1GCadWZAlIaUUpRoFU3oA2gWR0CQASHJcPe6dX2UKGgGaAloD0MIUn5S7dNdTcCUhpRSlGgVTXABaBZHQJABMzBRAKR1fZQoaAZoCWgPQwgtsp3vp/JaQJSGlFKUaBVN6ANoFkdAkAMfShJyyXV9lChoBmgJaA9DCDrrU47JUGFAlIaUUpRoFU3oA2gWR0CQBFTufEn9dX2UKGgGaAloD0MI6GnAIOlUYECUhpRSlGgVTegDaBZHQJALuFvhqCZ1fZQoaAZoCWgPQwj59q5BX2dcQJSGlFKUaBVN6ANoFkdAkAu6Fh5PdnV9lChoBmgJaA9DCJvj3CbckFNAlIaUUpRoFU3oA2gWR0CQIrNZNfw7dX2UKGgGaAloD0MI/yWpTDEjZUCUhpRSlGgVTegDaBZHQJAwSorFwUB1fZQoaAZoCWgPQwg0TG2pg5dfQJSGlFKUaBVN6ANoFkdAkDDpLqUu+XV9lChoBmgJaA9DCIjxmld1rjVAlIaUUpRoFUv+aBZHQJAyxlAeJYV1fZQoaAZoCWgPQwgx7Zv7q3s9QJSGlFKUaBVN6ANoFkdAkEBZOSGJvnV9lChoBmgJaA9DCMZpiCr8CVtAlIaUUpRoFU3oA2gWR0CQS3IDoyKvdX2UKGgGaAloD0MIya60jNTFXkCUhpRSlGgVTegDaBZHQJBQEA0bcXZ1fZQoaAZoCWgPQwhUbqKW5thXQJSGlFKUaBVN6ANoFkdAkFCI9cKPXHV9lChoBmgJaA9DCMSww5j0XVlAlIaUUpRoFU3oA2gWR0CQU7f2bobGdX2UKGgGaAloD0MIiEm4kEfqWECUhpRSlGgVTegDaBZHQJBXZwOvt+l1fZQoaAZoCWgPQwiPjNXmfxZjQJSGlFKUaBVN6ANoFkdAkF1GhVU+93V9lChoBmgJaA9DCFlMbD6uPRzAlIaUUpRoFU3oA2gWR0CQYLrtmcvvdX2UKGgGaAloD0MIJa/OMSD1X0CUhpRSlGgVTegDaBZHQJBgzO7g88t1fZQoaAZoCWgPQwiXcVMDTa1hQJSGlFKUaBVN6ANoFkdAkGK8NQTEi3V9lChoBmgJaA9DCCzvqgfMMlBAlIaUUpRoFU3oA2gWR0CQY9gdOqNqdX2UKGgGaAloD0MIlNxhE5nlWkCUhpRSlGgVTegDaBZHQJBp6Mzdk8R1fZQoaAZoCWgPQwiHwmfr4EAkwJSGlFKUaBVNMgFoFkdAkGpJ5u63AnV9lChoBmgJaA9DCDZ39L9cRFlAlIaUUpRoFU3oA2gWR0CQf44Z/CqIdX2UKGgGaAloD0MIODEkJxOkWUCUhpRSlGgVTegDaBZHQJCJ160IC2d1fZQoaAZoCWgPQwiazHhb6QBeQJSGlFKUaBVN6ANoFkdAkIpXSKFZgXV9lChoBmgJaA9DCBBaD18mTGZAlIaUUpRoFU3oA2gWR0CQi93AVO9GdX2UKGgGaAloD0MIh2u1h70GXUCUhpRSlGgVTegDaBZHQJCWt0hePaN1fZQoaAZoCWgPQwj1nV+UICZhQJSGlFKUaBVN6ANoFkdAkKAEsSTQmnV9lChoBmgJaA9DCAlwehfv50pAlIaUUpRoFU3oA2gWR0CQpC9V3ljmdX2UKGgGaAloD0MIi28ofDZtY0CUhpRSlGgVTegDaBZHQJCkoOWjXWh1fZQoaAZoCWgPQwglsaTcfZtfQJSGlFKUaBVN6ANoFkdAkKdoF3Y+S3V9lChoBmgJaA9DCLCqXn6nvUdAlIaUUpRoFU0+AWgWR0CQrWu63AmBdX2UKGgGaAloD0MIjPhOzHphXkCUhpRSlGgVTegDaBZHQJCxD1YhdMV1fZQoaAZoCWgPQwiGdePdkWlhQJSGlFKUaBVN6ANoFkdAkLSTMzMzM3V9lChoBmgJaA9DCEEpWrkXQlFAlIaUUpRoFU3oA2gWR0CQtKUrTYukdX2UKGgGaAloD0MIqaCi6lePW0CUhpRSlGgVTegDaBZHQJC2nRCx/ut1fZQoaAZoCWgPQwj5SbVPR/9jQJSGlFKUaBVN6ANoFkdAkLfdihFmWnV9lChoBmgJaA9DCBN/FHXm9mBAlIaUUpRoFU3oA2gWR0CQvyg3tKI0dX2UKGgGaAloD0MIFw6EZAGlQ0CUhpRSlGgVTegDaBZHQJC/pD6WPcV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c77baf650d1ae1fa011d52b09c8d9ca4c85439416c22339c1b4fb4765c16f01
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dff9c7271cf0ff1f4acda0531be64de028fee03de797c85c82b8bc36c3711ee3
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (241 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 164.57916732892068, "std_reward": 87.78331703430844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T08:09:11.980080"}