Model save
Browse files
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: rinna/japanese-hubert-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: Hubert-common_voice_JSUT-ja-demo-kana
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Hubert-common_voice_JSUT-ja-demo-kana
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5777
|
22 |
+
- Wer: 1.0
|
23 |
+
- Cer: 0.3109
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 2
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 12500
|
51 |
+
- num_epochs: 20.0
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
57 |
+
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
|
58 |
+
| No log | 0.1936 | 100 | 41.9560 | 1.5294 | 6.1696 |
|
59 |
+
| No log | 0.3872 | 200 | 41.4657 | 1.4235 | 5.9722 |
|
60 |
+
| No log | 0.5808 | 300 | 40.2769 | 1.1848 | 3.7327 |
|
61 |
+
| No log | 0.7744 | 400 | 36.3010 | 1.0 | 0.9963 |
|
62 |
+
| 31.4419 | 0.9681 | 500 | 24.5426 | 1.0 | 0.9991 |
|
63 |
+
| 31.4419 | 1.1607 | 600 | 18.8642 | 1.0 | 0.9991 |
|
64 |
+
| 31.4419 | 1.3543 | 700 | 17.6651 | 1.0 | 0.9991 |
|
65 |
+
| 31.4419 | 1.5479 | 800 | 17.2007 | 1.0 | 0.9992 |
|
66 |
+
| 31.4419 | 1.7415 | 900 | 16.7617 | 1.0 | 0.9991 |
|
67 |
+
| 14.8315 | 1.9351 | 1000 | 16.2895 | 1.0 | 0.9991 |
|
68 |
+
| 14.8315 | 2.1278 | 1100 | 15.7877 | 1.0 | 0.9991 |
|
69 |
+
| 14.8315 | 2.3214 | 1200 | 15.2488 | 1.0 | 0.9991 |
|
70 |
+
| 14.8315 | 2.5150 | 1300 | 14.6680 | 1.0 | 0.9991 |
|
71 |
+
| 14.8315 | 2.7086 | 1400 | 14.0637 | 1.0 | 0.9991 |
|
72 |
+
| 12.4363 | 2.9022 | 1500 | 13.4217 | 1.0 | 0.9991 |
|
73 |
+
| 12.4363 | 3.0949 | 1600 | 12.7374 | 1.0 | 0.9991 |
|
74 |
+
| 12.4363 | 3.2885 | 1700 | 12.0319 | 1.0 | 0.9991 |
|
75 |
+
| 12.4363 | 3.4821 | 1800 | 11.2982 | 1.0 | 0.9991 |
|
76 |
+
| 12.4363 | 3.6757 | 1900 | 10.5580 | 1.0 | 0.9992 |
|
77 |
+
| 9.8267 | 3.8693 | 2000 | 9.8129 | 1.0 | 0.9991 |
|
78 |
+
| 9.8267 | 4.0620 | 2100 | 9.0640 | 1.0 | 0.9991 |
|
79 |
+
| 9.8267 | 4.2556 | 2200 | 8.3376 | 1.0 | 0.9992 |
|
80 |
+
| 9.8267 | 4.4492 | 2300 | 7.6287 | 1.0 | 0.9991 |
|
81 |
+
| 9.8267 | 4.6428 | 2400 | 6.9678 | 1.0 | 0.9991 |
|
82 |
+
| 6.9778 | 4.8364 | 2500 | 6.3635 | 1.0 | 0.9992 |
|
83 |
+
| 6.9778 | 5.0290 | 2600 | 5.8258 | 1.0 | 0.9991 |
|
84 |
+
| 6.9778 | 5.2227 | 2700 | 5.3677 | 1.0 | 0.9991 |
|
85 |
+
| 6.9778 | 5.4163 | 2800 | 4.9888 | 1.0 | 0.9991 |
|
86 |
+
| 6.9778 | 5.6099 | 2900 | 4.6956 | 1.0 | 0.9991 |
|
87 |
+
| 4.8731 | 5.8035 | 3000 | 4.4788 | 1.0 | 0.9991 |
|
88 |
+
| 4.8731 | 5.9971 | 3100 | 4.3287 | 1.0 | 0.9991 |
|
89 |
+
| 4.8731 | 6.1897 | 3200 | 4.2057 | 1.0 | 0.9991 |
|
90 |
+
| 4.8731 | 6.3833 | 3300 | 4.1448 | 1.0 | 0.9991 |
|
91 |
+
| 4.8731 | 6.5770 | 3400 | 4.1095 | 1.0 | 0.9991 |
|
92 |
+
| 4.1216 | 6.7706 | 3500 | 4.0858 | 1.0 | 0.9991 |
|
93 |
+
| 4.1216 | 6.9642 | 3600 | 4.0725 | 1.0 | 0.9991 |
|
94 |
+
| 4.1216 | 7.1568 | 3700 | 4.0648 | 1.0 | 0.9991 |
|
95 |
+
| 4.1216 | 7.3504 | 3800 | 4.0578 | 1.0 | 0.9991 |
|
96 |
+
| 4.1216 | 7.5440 | 3900 | 4.0494 | 1.0 | 0.9991 |
|
97 |
+
| 4.0264 | 7.7377 | 4000 | 4.0367 | 1.0 | 0.9991 |
|
98 |
+
| 4.0264 | 7.9313 | 4100 | 4.0276 | 1.0 | 0.9991 |
|
99 |
+
| 4.0264 | 8.1239 | 4200 | 4.0121 | 1.0 | 0.9991 |
|
100 |
+
| 4.0264 | 8.3175 | 4300 | 3.9720 | 1.0 | 0.9991 |
|
101 |
+
| 4.0264 | 8.5111 | 4400 | 3.9031 | 1.0 | 0.9991 |
|
102 |
+
| 3.937 | 8.7047 | 4500 | 3.8091 | 1.0 | 0.9991 |
|
103 |
+
| 3.937 | 8.8984 | 4600 | 3.6690 | 1.0 | 0.9991 |
|
104 |
+
| 3.937 | 9.0910 | 4700 | 3.4759 | 1.0 | 0.9991 |
|
105 |
+
| 3.937 | 9.2846 | 4800 | 3.2108 | 1.0 | 0.9987 |
|
106 |
+
| 3.937 | 9.4782 | 4900 | 2.6813 | 1.0 | 0.6453 |
|
107 |
+
| 3.1866 | 9.6718 | 5000 | 2.3876 | 1.0002 | 0.5372 |
|
108 |
+
| 3.1866 | 9.8654 | 5100 | 2.1678 | 1.0 | 0.4902 |
|
109 |
+
| 3.1866 | 10.0581 | 5200 | 1.9945 | 1.0002 | 0.4530 |
|
110 |
+
| 3.1866 | 10.2517 | 5300 | 1.8576 | 1.0 | 0.4270 |
|
111 |
+
| 3.1866 | 10.4453 | 5400 | 1.7788 | 1.0 | 0.4399 |
|
112 |
+
| 1.9458 | 10.6389 | 5500 | 1.6520 | 1.0 | 0.4094 |
|
113 |
+
| 1.9458 | 10.8325 | 5600 | 1.5545 | 1.0 | 0.3874 |
|
114 |
+
| 1.9458 | 11.0252 | 5700 | 1.4698 | 1.0 | 0.3800 |
|
115 |
+
| 1.9458 | 11.2188 | 5800 | 1.4052 | 1.0 | 0.3777 |
|
116 |
+
| 1.9458 | 11.4124 | 5900 | 1.3276 | 1.0 | 0.3658 |
|
117 |
+
| 1.4263 | 11.6060 | 6000 | 1.2710 | 1.0 | 0.3668 |
|
118 |
+
| 1.4263 | 11.7996 | 6100 | 1.2150 | 1.0 | 0.3536 |
|
119 |
+
| 1.4263 | 11.9932 | 6200 | 1.1586 | 1.0 | 0.3531 |
|
120 |
+
| 1.4263 | 12.1859 | 6300 | 1.1156 | 1.0 | 0.3519 |
|
121 |
+
| 1.4263 | 12.3795 | 6400 | 1.0729 | 1.0 | 0.3484 |
|
122 |
+
| 1.1212 | 12.5731 | 6500 | 1.0345 | 1.0 | 0.3467 |
|
123 |
+
| 1.1212 | 12.7667 | 6600 | 0.9887 | 1.0 | 0.3428 |
|
124 |
+
| 1.1212 | 12.9603 | 6700 | 0.9630 | 1.0 | 0.3417 |
|
125 |
+
| 1.1212 | 13.1530 | 6800 | 0.9260 | 1.0 | 0.3381 |
|
126 |
+
| 1.1212 | 13.3466 | 6900 | 0.9005 | 1.0 | 0.3397 |
|
127 |
+
| 0.9141 | 13.5402 | 7000 | 0.8764 | 1.0 | 0.3369 |
|
128 |
+
| 0.9141 | 13.7338 | 7100 | 0.8512 | 1.0 | 0.3363 |
|
129 |
+
| 0.9141 | 13.9274 | 7200 | 0.8273 | 1.0 | 0.3351 |
|
130 |
+
| 0.9141 | 14.1200 | 7300 | 0.8083 | 1.0 | 0.3329 |
|
131 |
+
| 0.9141 | 14.3136 | 7400 | 0.7851 | 0.9998 | 0.3300 |
|
132 |
+
| 0.7811 | 14.5073 | 7500 | 0.7743 | 1.0 | 0.3312 |
|
133 |
+
| 0.7811 | 14.7009 | 7600 | 0.7510 | 0.9998 | 0.3272 |
|
134 |
+
| 0.7811 | 14.8945 | 7700 | 0.7366 | 1.0 | 0.3267 |
|
135 |
+
| 0.7811 | 15.0871 | 7800 | 0.7290 | 1.0 | 0.3253 |
|
136 |
+
| 0.7811 | 15.2807 | 7900 | 0.7132 | 1.0 | 0.3247 |
|
137 |
+
| 0.6725 | 15.4743 | 8000 | 0.7190 | 1.0 | 0.3277 |
|
138 |
+
| 0.6725 | 15.6680 | 8100 | 0.7006 | 1.0 | 0.3241 |
|
139 |
+
| 0.6725 | 15.8616 | 8200 | 0.6835 | 1.0 | 0.3226 |
|
140 |
+
| 0.6725 | 16.0542 | 8300 | 0.6698 | 0.9998 | 0.3209 |
|
141 |
+
| 0.6725 | 16.2478 | 8400 | 0.6628 | 0.9998 | 0.3214 |
|
142 |
+
| 0.606 | 16.4414 | 8500 | 0.6538 | 1.0 | 0.3205 |
|
143 |
+
| 0.606 | 16.6350 | 8600 | 0.6523 | 1.0 | 0.3186 |
|
144 |
+
| 0.606 | 16.8287 | 8700 | 0.6449 | 1.0 | 0.3183 |
|
145 |
+
| 0.606 | 17.0213 | 8800 | 0.6401 | 1.0 | 0.3179 |
|
146 |
+
| 0.606 | 17.2149 | 8900 | 0.6333 | 1.0 | 0.3200 |
|
147 |
+
| 0.5492 | 17.4085 | 9000 | 0.6333 | 1.0 | 0.3201 |
|
148 |
+
| 0.5492 | 17.6021 | 9100 | 0.6219 | 1.0 | 0.3179 |
|
149 |
+
| 0.5492 | 17.7957 | 9200 | 0.6189 | 1.0 | 0.3201 |
|
150 |
+
| 0.5492 | 17.9894 | 9300 | 0.6023 | 0.9998 | 0.3166 |
|
151 |
+
| 0.5492 | 18.1820 | 9400 | 0.6084 | 1.0 | 0.3154 |
|
152 |
+
| 0.5057 | 18.3756 | 9500 | 0.6002 | 0.9998 | 0.3147 |
|
153 |
+
| 0.5057 | 18.5692 | 9600 | 0.5875 | 1.0 | 0.3128 |
|
154 |
+
| 0.5057 | 18.7628 | 9700 | 0.5903 | 0.9998 | 0.3138 |
|
155 |
+
| 0.5057 | 18.9564 | 9800 | 0.5930 | 1.0 | 0.3127 |
|
156 |
+
| 0.5057 | 19.1491 | 9900 | 0.5855 | 1.0 | 0.3141 |
|
157 |
+
| 0.4709 | 19.3427 | 10000 | 0.5880 | 1.0 | 0.3120 |
|
158 |
+
| 0.4709 | 19.5363 | 10100 | 0.5855 | 1.0 | 0.3131 |
|
159 |
+
| 0.4709 | 19.7299 | 10200 | 0.5734 | 1.0 | 0.3106 |
|
160 |
+
| 0.4709 | 19.9235 | 10300 | 0.5777 | 1.0 | 0.3109 |
|
161 |
+
|
162 |
+
|
163 |
+
### Framework versions
|
164 |
+
|
165 |
+
- Transformers 4.47.0.dev0
|
166 |
+
- Pytorch 2.5.1+cu124
|
167 |
+
- Datasets 3.1.0
|
168 |
+
- Tokenizers 0.20.3
|