Model save
Browse files
README.md
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: rinna/japanese-hubert-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- common_voice_13_0
|
9 |
+
metrics:
|
10 |
+
- wer
|
11 |
+
model-index:
|
12 |
+
- name: Hubert-common_voice-ja-demo-kana-only-cosine
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: common_voice_13_0
|
19 |
+
type: common_voice_13_0
|
20 |
+
config: ja
|
21 |
+
split: test
|
22 |
+
args: ja
|
23 |
+
metrics:
|
24 |
+
- name: Wer
|
25 |
+
type: wer
|
26 |
+
value: 1.0
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# Hubert-common_voice-ja-demo-kana-only-cosine
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the common_voice_13_0 dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.6323
|
37 |
+
- Wer: 1.0
|
38 |
+
- Cer: 0.3307
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 3e-05
|
58 |
+
- train_batch_size: 16
|
59 |
+
- eval_batch_size: 8
|
60 |
+
- seed: 42
|
61 |
+
- gradient_accumulation_steps: 2
|
62 |
+
- total_train_batch_size: 32
|
63 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
64 |
+
- lr_scheduler_type: cosine
|
65 |
+
- lr_scheduler_warmup_steps: 12500
|
66 |
+
- num_epochs: 25.0
|
67 |
+
- mixed_precision_training: Native AMP
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
72 |
+
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
|
73 |
+
| No log | 0.2660 | 100 | 43.2251 | 1.5295 | 5.8210 |
|
74 |
+
| No log | 0.5319 | 200 | 42.4452 | 1.5322 | 5.2849 |
|
75 |
+
| No log | 0.7979 | 300 | 40.4154 | 1.1262 | 1.8126 |
|
76 |
+
| No log | 1.0638 | 400 | 32.8021 | 1.0 | 0.9999 |
|
77 |
+
| 31.884 | 1.3298 | 500 | 20.8133 | 1.0 | 0.9999 |
|
78 |
+
| 31.884 | 1.5957 | 600 | 17.5824 | 1.0 | 0.9999 |
|
79 |
+
| 31.884 | 1.8617 | 700 | 16.8682 | 1.0 | 0.9999 |
|
80 |
+
| 31.884 | 2.1277 | 800 | 16.4466 | 1.0 | 0.9999 |
|
81 |
+
| 31.884 | 2.3936 | 900 | 16.0037 | 1.0 | 0.9999 |
|
82 |
+
| 14.4701 | 2.6596 | 1000 | 15.5409 | 1.0 | 0.9999 |
|
83 |
+
| 14.4701 | 2.9255 | 1100 | 15.0446 | 1.0 | 0.9999 |
|
84 |
+
| 14.4701 | 3.1915 | 1200 | 14.5023 | 1.0 | 0.9999 |
|
85 |
+
| 14.4701 | 3.4574 | 1300 | 13.9298 | 1.0 | 0.9999 |
|
86 |
+
| 14.4701 | 3.7234 | 1400 | 13.3212 | 1.0 | 0.9999 |
|
87 |
+
| 12.1626 | 3.9894 | 1500 | 12.6814 | 1.0 | 0.9999 |
|
88 |
+
| 12.1626 | 4.2553 | 1600 | 12.0099 | 1.0 | 0.9999 |
|
89 |
+
| 12.1626 | 4.5213 | 1700 | 11.3179 | 1.0 | 0.9999 |
|
90 |
+
| 12.1626 | 4.7872 | 1800 | 10.6017 | 1.0 | 0.9999 |
|
91 |
+
| 12.1626 | 5.0532 | 1900 | 9.8810 | 1.0 | 0.9999 |
|
92 |
+
| 9.5127 | 5.3191 | 2000 | 9.1567 | 1.0 | 0.9999 |
|
93 |
+
| 9.5127 | 5.5851 | 2100 | 8.4445 | 1.0 | 0.9999 |
|
94 |
+
| 9.5127 | 5.8511 | 2200 | 7.7573 | 1.0 | 0.9999 |
|
95 |
+
| 9.5127 | 6.1170 | 2300 | 7.1049 | 1.0 | 0.9999 |
|
96 |
+
| 9.5127 | 6.3830 | 2400 | 6.5016 | 1.0 | 0.9999 |
|
97 |
+
| 6.6873 | 6.6489 | 2500 | 5.9565 | 1.0 | 0.9999 |
|
98 |
+
| 6.6873 | 6.9149 | 2600 | 5.4853 | 1.0 | 0.9999 |
|
99 |
+
| 6.6873 | 7.1809 | 2700 | 5.0997 | 1.0 | 0.9999 |
|
100 |
+
| 6.6873 | 7.4468 | 2800 | 4.7889 | 1.0 | 0.9999 |
|
101 |
+
| 6.6873 | 7.7128 | 2900 | 4.5573 | 1.0 | 0.9999 |
|
102 |
+
| 4.7448 | 7.9787 | 3000 | 4.3889 | 1.0 | 0.9999 |
|
103 |
+
| 4.7448 | 8.2447 | 3100 | 4.2614 | 1.0 | 0.9999 |
|
104 |
+
| 4.7448 | 8.5106 | 3200 | 4.1960 | 1.0 | 0.9999 |
|
105 |
+
| 4.7448 | 8.7766 | 3300 | 4.1398 | 1.0 | 0.9999 |
|
106 |
+
| 4.7448 | 9.0426 | 3400 | 4.1092 | 1.0 | 0.9999 |
|
107 |
+
| 4.1253 | 9.3085 | 3500 | 4.0911 | 1.0 | 0.9999 |
|
108 |
+
| 4.1253 | 9.5745 | 3600 | 4.0851 | 1.0 | 0.9999 |
|
109 |
+
| 4.1253 | 9.8404 | 3700 | 4.0707 | 1.0 | 0.9999 |
|
110 |
+
| 4.1253 | 10.1064 | 3800 | 4.0630 | 1.0 | 0.9999 |
|
111 |
+
| 4.1253 | 10.3723 | 3900 | 4.0589 | 1.0 | 0.9999 |
|
112 |
+
| 4.0399 | 10.6383 | 4000 | 4.0574 | 1.0 | 0.9999 |
|
113 |
+
| 4.0399 | 10.9043 | 4100 | 4.0495 | 1.0 | 0.9999 |
|
114 |
+
| 4.0399 | 11.1702 | 4200 | 4.0367 | 1.0 | 0.9999 |
|
115 |
+
| 4.0399 | 11.4362 | 4300 | 4.0297 | 1.0 | 0.9999 |
|
116 |
+
| 4.0399 | 11.7021 | 4400 | 4.0168 | 1.0 | 0.9999 |
|
117 |
+
| 4.0102 | 11.9681 | 4500 | 4.0002 | 1.0 | 0.9999 |
|
118 |
+
| 4.0102 | 12.2340 | 4600 | 3.9823 | 1.0 | 0.9999 |
|
119 |
+
| 4.0102 | 12.5 | 4700 | 3.9474 | 1.0 | 0.9999 |
|
120 |
+
| 4.0102 | 12.7660 | 4800 | 3.8870 | 1.0 | 0.9999 |
|
121 |
+
| 4.0102 | 13.0319 | 4900 | 3.7933 | 1.0 | 0.9999 |
|
122 |
+
| 3.8616 | 13.2979 | 5000 | 3.6576 | 1.0 | 0.9999 |
|
123 |
+
| 3.8616 | 13.5638 | 5100 | 3.4925 | 1.0 | 0.9999 |
|
124 |
+
| 3.8616 | 13.8298 | 5200 | 3.2550 | 1.0 | 0.9999 |
|
125 |
+
| 3.8616 | 14.0957 | 5300 | 2.8836 | 1.0 | 0.8301 |
|
126 |
+
| 3.8616 | 14.3617 | 5400 | 2.5211 | 1.0 | 0.6171 |
|
127 |
+
| 3.023 | 14.6277 | 5500 | 2.2902 | 1.0 | 0.5481 |
|
128 |
+
| 3.023 | 14.8936 | 5600 | 2.1006 | 1.0 | 0.5079 |
|
129 |
+
| 3.023 | 15.1596 | 5700 | 1.9464 | 1.0 | 0.4784 |
|
130 |
+
| 3.023 | 15.4255 | 5800 | 1.8196 | 1.0 | 0.4597 |
|
131 |
+
| 3.023 | 15.6915 | 5900 | 1.6975 | 1.0 | 0.4238 |
|
132 |
+
| 1.9348 | 15.9574 | 6000 | 1.6040 | 1.0 | 0.4093 |
|
133 |
+
| 1.9348 | 16.2234 | 6100 | 1.5035 | 1.0 | 0.4021 |
|
134 |
+
| 1.9348 | 16.4894 | 6200 | 1.4211 | 1.0 | 0.3930 |
|
135 |
+
| 1.9348 | 16.7553 | 6300 | 1.3529 | 1.0 | 0.3802 |
|
136 |
+
| 1.9348 | 17.0213 | 6400 | 1.2795 | 1.0 | 0.3791 |
|
137 |
+
| 1.4128 | 17.2872 | 6500 | 1.2193 | 1.0 | 0.3711 |
|
138 |
+
| 1.4128 | 17.5532 | 6600 | 1.1646 | 1.0 | 0.3674 |
|
139 |
+
| 1.4128 | 17.8191 | 6700 | 1.1193 | 1.0 | 0.3706 |
|
140 |
+
| 1.4128 | 18.0851 | 6800 | 1.0665 | 1.0 | 0.3606 |
|
141 |
+
| 1.4128 | 18.3511 | 6900 | 1.0244 | 0.9998 | 0.3590 |
|
142 |
+
| 1.1012 | 18.6170 | 7000 | 0.9864 | 1.0 | 0.3540 |
|
143 |
+
| 1.1012 | 18.8830 | 7100 | 0.9578 | 1.0 | 0.3554 |
|
144 |
+
| 1.1012 | 19.1489 | 7200 | 0.9309 | 0.9998 | 0.3509 |
|
145 |
+
| 1.1012 | 19.4149 | 7300 | 0.9070 | 1.0 | 0.3495 |
|
146 |
+
| 1.1012 | 19.6809 | 7400 | 0.8693 | 0.9998 | 0.3470 |
|
147 |
+
| 0.9083 | 19.9468 | 7500 | 0.8492 | 1.0 | 0.3449 |
|
148 |
+
| 0.9083 | 20.2128 | 7600 | 0.8214 | 1.0 | 0.3449 |
|
149 |
+
| 0.9083 | 20.4787 | 7700 | 0.8211 | 1.0 | 0.3500 |
|
150 |
+
| 0.9083 | 20.7447 | 7800 | 0.7964 | 1.0 | 0.3452 |
|
151 |
+
| 0.9083 | 21.0106 | 7900 | 0.7797 | 1.0 | 0.3429 |
|
152 |
+
| 0.7546 | 21.2766 | 8000 | 0.7634 | 1.0 | 0.3400 |
|
153 |
+
| 0.7546 | 21.5426 | 8100 | 0.7471 | 1.0 | 0.3384 |
|
154 |
+
| 0.7546 | 21.8085 | 8200 | 0.7400 | 1.0 | 0.3378 |
|
155 |
+
| 0.7546 | 22.0745 | 8300 | 0.7214 | 1.0 | 0.3390 |
|
156 |
+
| 0.7546 | 22.3404 | 8400 | 0.7062 | 0.9998 | 0.3375 |
|
157 |
+
| 0.651 | 22.6064 | 8500 | 0.6973 | 1.0 | 0.3344 |
|
158 |
+
| 0.651 | 22.8723 | 8600 | 0.6930 | 0.9998 | 0.3344 |
|
159 |
+
| 0.651 | 23.1383 | 8700 | 0.6829 | 1.0 | 0.3350 |
|
160 |
+
| 0.651 | 23.4043 | 8800 | 0.6683 | 1.0 | 0.3332 |
|
161 |
+
| 0.651 | 23.6702 | 8900 | 0.6596 | 0.9998 | 0.3322 |
|
162 |
+
| 0.5868 | 23.9362 | 9000 | 0.6764 | 1.0 | 0.3321 |
|
163 |
+
| 0.5868 | 24.2021 | 9100 | 0.6635 | 0.9998 | 0.3308 |
|
164 |
+
| 0.5868 | 24.4681 | 9200 | 0.6560 | 1.0 | 0.3324 |
|
165 |
+
| 0.5868 | 24.7340 | 9300 | 0.6412 | 1.0 | 0.3290 |
|
166 |
+
| 0.5868 | 25.0 | 9400 | 0.6323 | 1.0 | 0.3307 |
|
167 |
+
|
168 |
+
|
169 |
+
### Framework versions
|
170 |
+
|
171 |
+
- Transformers 4.47.0.dev0
|
172 |
+
- Pytorch 2.5.1+cu124
|
173 |
+
- Datasets 3.1.0
|
174 |
+
- Tokenizers 0.20.3
|