whisper-base / README.md
uoseftalaat's picture
End of training
b623c92 verified
|
raw
history blame
2.24 kB
metadata
language:
  - ara
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - AsemBadr/GP
metrics:
  - wer
model-index:
  - name: Whisper Small for Quran Recognition
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Quran_Reciters
          type: AsemBadr/GP
          config: default
          split: test
          args: 'config: default, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 9.059652741963212

Whisper Small for Quran Recognition

This model is a fine-tuned version of openai/whisper-small on the Quran_Reciters dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0275
  • Wer: 9.0597

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.075 1.62 500 0.0741 24.0846
0.006 3.24 1000 0.0345 12.3259
0.0016 4.85 1500 0.0273 9.7817
0.0004 6.47 2000 0.0266 9.1800
0.0002 8.09 2500 0.0268 9.0253
0.0002 9.71 3000 0.0274 9.0425
0.0002 11.33 3500 0.0275 9.0597
0.0001 12.94 4000 0.0275 9.0597

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.17.1
  • Tokenizers 0.15.2