unreal-hug's picture
End of training
0001752 verified
metadata
license: other
base_model: nvidia/mit-b3
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b2-seed-67-v1
    results: []

segformer-b2-seed-67-v1

This model is a fine-tuned version of nvidia/mit-b3 on the unreal-hug/REAL_DATASET_SEG_331 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4746
  • Mean Iou: 0.2841
  • Mean Accuracy: 0.3507
  • Overall Accuracy: 0.6084
  • Accuracy Unlabeled: nan
  • Accuracy Lv: 0.7915
  • Accuracy Rv: 0.4646
  • Accuracy Ra: 0.4834
  • Accuracy La: 0.6858
  • Accuracy Vs: 0.0
  • Accuracy As: 0.0
  • Accuracy Mk: 0.0
  • Accuracy Tk: nan
  • Accuracy Asd: 0.3160
  • Accuracy Vsd: 0.2747
  • Accuracy Ak: 0.4910
  • Iou Unlabeled: 0.0
  • Iou Lv: 0.7252
  • Iou Rv: 0.4232
  • Iou Ra: 0.4411
  • Iou La: 0.5427
  • Iou Vs: 0.0
  • Iou As: 0.0
  • Iou Mk: 0.0
  • Iou Tk: nan
  • Iou Asd: 0.2832
  • Iou Vsd: 0.2342
  • Iou Ak: 0.4759

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Lv Accuracy Rv Accuracy Ra Accuracy La Accuracy Vs Accuracy As Accuracy Mk Accuracy Tk Accuracy Asd Accuracy Vsd Accuracy Ak Iou Unlabeled Iou Lv Iou Rv Iou Ra Iou La Iou Vs Iou As Iou Mk Iou Tk Iou Asd Iou Vsd Iou Ak
1.2449 5.88 100 1.1508 0.1187 0.1954 0.4575 nan 0.8193 0.0533 0.1371 0.5424 0.0 0.0 0.0 nan 0.0171 0.0155 0.3697 0.0 0.5501 0.0518 0.1253 0.3509 0.0 0.0 0.0 0.0 0.0170 0.0148 0.3145
0.7118 11.76 200 0.7012 0.1534 0.2007 0.4466 nan 0.7352 0.1138 0.2300 0.5548 0.0 0.0 0.0 nan 0.0168 0.0284 0.3280 0.0 0.6079 0.1081 0.2084 0.4120 0.0 0.0 0.0 nan 0.0167 0.0276 0.3064
0.5567 17.65 300 0.5686 0.1896 0.2372 0.4810 nan 0.6994 0.2332 0.3522 0.5913 0.0 0.0 0.0 nan 0.0389 0.0765 0.3806 0.0 0.6382 0.2142 0.3023 0.4563 0.0 0.0 0.0 nan 0.0386 0.0714 0.3649
0.5054 23.53 400 0.5441 0.2473 0.3075 0.5803 nan 0.7991 0.4241 0.4885 0.5970 0.0 0.0 0.0 nan 0.1535 0.1388 0.4745 0.0 0.7215 0.3725 0.4107 0.4908 0.0 0.0 0.0 nan 0.1486 0.1228 0.4537
0.4344 29.41 500 0.5188 0.2706 0.3382 0.5967 nan 0.7810 0.4337 0.4668 0.7031 0.0 0.0 0.0 nan 0.2612 0.2644 0.4721 0.0 0.7121 0.3916 0.4164 0.5372 0.0 0.0 0.0 nan 0.2398 0.2236 0.4558
0.3796 35.29 600 0.5032 0.2669 0.3315 0.5911 nan 0.7953 0.4343 0.4050 0.6920 0.0 0.0 0.0 nan 0.2841 0.2321 0.4717 0.0 0.7196 0.3965 0.3778 0.5273 0.0 0.0 0.0 nan 0.2589 0.1996 0.4568
0.3888 41.18 700 0.4801 0.2798 0.3461 0.6037 nan 0.7862 0.4532 0.4667 0.6983 0.0 0.0 0.0 nan 0.3065 0.2590 0.4908 0.0 0.7192 0.4127 0.4292 0.5444 0.0 0.0 0.0 nan 0.2756 0.2216 0.4746
0.3467 47.06 800 0.4753 0.2822 0.3478 0.6061 nan 0.7919 0.4585 0.4857 0.6814 0.0 0.0 0.0 nan 0.3131 0.2640 0.4831 0.0 0.7259 0.4196 0.4424 0.5402 0.0 0.0 0.0 nan 0.2813 0.2262 0.4685
0.3757 52.94 900 0.4746 0.2841 0.3507 0.6084 nan 0.7915 0.4646 0.4834 0.6858 0.0 0.0 0.0 nan 0.3160 0.2747 0.4910 0.0 0.7252 0.4232 0.4411 0.5427 0.0 0.0 0.0 nan 0.2832 0.2342 0.4759
0.3616 58.82 1000 0.4788 0.2860 0.3537 0.6116 nan 0.7931 0.4687 0.4837 0.6922 0.0 0.0 0.0 nan 0.3193 0.2830 0.4970 0.0 0.7262 0.4259 0.4411 0.5449 0.0 0.0 0.0 nan 0.2856 0.2407 0.4817

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0