unreal-hug's picture
End of training
c44ced1
|
raw
history blame
6.47 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-ECHO-dev-01-v1
    results: []

segformer-b0-finetuned-segments-ECHO-dev-01-v1

This model is a fine-tuned version of nvidia/mit-b0 on the unreal-hug/SYNTH_DATASET_SEG dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1147
  • Mean Iou: 0.7718
  • Mean Accuracy: 0.9647
  • Overall Accuracy: 0.9651
  • Accuracy Unlabeled: nan
  • Accuracy Lv: 0.9592
  • Accuracy Lr: 0.9722
  • Accuracy Ra: 0.9540
  • Accuracy La: 0.9733
  • Iou Unlabeled: 0.0
  • Iou Lv: 0.9592
  • Iou Lr: 0.9722
  • Iou Ra: 0.9540
  • Iou La: 0.9733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Lv Accuracy Lr Accuracy Ra Accuracy La Iou Unlabeled Iou Lv Iou Lr Iou Ra Iou La
0.9325 2.5 20 1.3095 0.4524 0.7068 0.7433 nan 0.9170 0.8666 0.2895 0.7542 0.0 0.7498 0.6467 0.2538 0.6116
0.6633 5.0 40 0.7431 0.6359 0.8411 0.8600 nan 0.9559 0.9196 0.6304 0.8583 0.0 0.8810 0.8526 0.6270 0.8191
0.5492 7.5 60 0.4682 0.7583 0.9515 0.9548 nan 0.9702 0.9610 0.9452 0.9295 0.0 0.9630 0.9610 0.9380 0.9295
0.5418 10.0 80 0.3925 0.7453 0.9323 0.9367 nan 0.9520 0.9515 0.9050 0.9206 0.0 0.9509 0.9515 0.9036 0.9206
0.3586 12.5 100 0.3216 0.7612 0.9515 0.9561 nan 0.9594 0.9767 0.9359 0.9340 0.0 0.9594 0.9767 0.9359 0.9340
0.2943 15.0 120 0.2719 0.7615 0.9518 0.9541 nan 0.9480 0.9691 0.9413 0.9490 0.0 0.9480 0.9691 0.9413 0.9490
0.3039 17.5 140 0.2505 0.7765 0.9763 0.9743 nan 0.9742 0.9650 0.9799 0.9861 0.0 0.9742 0.9650 0.9572 0.9861
0.2639 20.0 160 0.2208 0.7743 0.9679 0.9690 nan 0.9676 0.9784 0.9477 0.9778 0.0 0.9676 0.9784 0.9477 0.9778
0.2252 22.5 180 0.1928 0.7710 0.9637 0.9655 nan 0.9618 0.9784 0.9483 0.9664 0.0 0.9618 0.9784 0.9483 0.9664
0.1816 25.0 200 0.1756 0.7690 0.9612 0.9619 nan 0.9574 0.9696 0.9501 0.9679 0.0 0.9574 0.9696 0.9501 0.9679
0.1676 27.5 220 0.1556 0.7610 0.9513 0.9541 nan 0.9483 0.9721 0.9387 0.9460 0.0 0.9483 0.9721 0.9387 0.9460
0.1833 30.0 240 0.1468 0.7786 0.9733 0.9742 nan 0.9669 0.9837 0.9639 0.9786 0.0 0.9669 0.9837 0.9639 0.9786
0.1487 32.5 260 0.1367 0.7708 0.9635 0.9649 nan 0.9580 0.9776 0.9479 0.9705 0.0 0.9580 0.9776 0.9479 0.9705
0.1482 35.0 280 0.1320 0.7712 0.9641 0.9655 nan 0.9576 0.9779 0.9555 0.9653 0.0 0.9576 0.9779 0.9555 0.9653
0.1412 37.5 300 0.1241 0.7763 0.9704 0.9706 nan 0.9696 0.9738 0.9590 0.9791 0.0 0.9696 0.9738 0.9590 0.9791
0.1282 40.0 320 0.1213 0.7724 0.9655 0.9665 nan 0.9588 0.9778 0.9512 0.9742 0.0 0.9588 0.9778 0.9512 0.9742
0.133 42.5 340 0.1155 0.7745 0.9681 0.9686 nan 0.9640 0.9752 0.9580 0.9751 0.0 0.9640 0.9752 0.9580 0.9751
0.1172 45.0 360 0.1178 0.7673 0.9603 0.9607 nan 0.9562 0.9665 0.9510 0.9676 0.0 0.9562 0.9665 0.9460 0.9676
0.1469 47.5 380 0.1138 0.7734 0.9668 0.9673 nan 0.9629 0.9743 0.9545 0.9753 0.0 0.9629 0.9743 0.9545 0.9753
0.1247 50.0 400 0.1147 0.7718 0.9647 0.9651 nan 0.9592 0.9722 0.9540 0.9733 0.0 0.9592 0.9722 0.9540 0.9733

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0