|
--- |
|
pipeline_tag: image-to-text |
|
tags: |
|
- image-captioning |
|
languages: |
|
- en |
|
license: bsd-3-clause |
|
widget: |
|
- src: >- |
|
https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg |
|
example_title: Savanna |
|
- src: >- |
|
https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg |
|
example_title: Football Match |
|
- src: >- |
|
https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg |
|
example_title: Airport |
|
datasets: |
|
- unography/laion-14k-GPT4V-LIVIS-Captions |
|
inference: |
|
parameters: |
|
max_length: 300 |
|
--- |
|
|
|
# LongCap: Finetuned [BLIP](https://huggingface.co/Salesforce/blip-image-captioning-large) for generating long captions of images, suitable for prompts for text-to-image generation and captioning text-to-image datasets |
|
|
|
|
|
## Usage |
|
|
|
You can use this model for conditional and un-conditional image captioning |
|
|
|
### Using the Pytorch model |
|
|
|
#### Running the model on CPU |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap") |
|
model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap") |
|
|
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' |
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') |
|
|
|
inputs = processor(raw_image, return_tensors="pt") |
|
pixel_values = inputs.pixel_values |
|
out = model.generate(pixel_values=pixel_values, max_length=250) |
|
print(processor.decode(out[0], skip_special_tokens=True)) |
|
>>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue. |
|
|
|
``` |
|
</details> |
|
|
|
#### Running the model on GPU |
|
|
|
##### In full precision |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap") |
|
model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap").to("cuda") |
|
|
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' |
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') |
|
|
|
inputs = processor(raw_image, return_tensors="pt").to("cuda") |
|
pixel_values = inputs.pixel_values |
|
out = model.generate(pixel_values=pixel_values, max_length=250) |
|
print(processor.decode(out[0], skip_special_tokens=True)) |
|
>>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue. |
|
``` |
|
</details> |
|
|
|
##### In half precision (`float16`) |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
import torch |
|
import requests |
|
from PIL import Image |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap") |
|
model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap", torch_dtype=torch.float16).to("cuda") |
|
|
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' |
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') |
|
|
|
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) |
|
pixel_values = inputs.pixel_values |
|
out = model.generate(pixel_values=pixel_values, max_length=250) |
|
print(processor.decode(out[0], skip_special_tokens=True)) |
|
>>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue. |
|
``` |
|
</details> |