Upload 4 files
Browse files- README.md +4 -4
- RunMobileNet.cs +39 -37
- info.json +1 -1
- mobilenet_v2.sentis +2 -2
README.md
CHANGED
@@ -4,16 +4,16 @@ library_name: unity-sentis
|
|
4 |
pipeline_tag: image-classification
|
5 |
---
|
6 |
|
7 |
-
## MobileNet V2 in Unity Sentis Format (Version 1.
|
8 |
-
*Version 1.3.0 Sentis files are not compatible with
|
9 |
|
10 |
This is a small image classification model that works in Unity 2023. It is based on [MobileNet V2](https://arxiv.org/abs/1801.04381)
|
11 |
|
12 |
## How to Use
|
13 |
* Create a new scene in Unity 2023
|
14 |
-
* Install `com.unity.sentis` version `1.
|
15 |
* Add the C# script to the Main Camera
|
16 |
-
*
|
17 |
* Drag the `class_desc.txt` on to the `labelsAsset` field
|
18 |
* Drag one of the sample images on to the inputImage field in the inspector.
|
19 |
* Press play and the result of the prediction will print to the console window.
|
|
|
4 |
pipeline_tag: image-classification
|
5 |
---
|
6 |
|
7 |
+
## MobileNet V2 in Unity Sentis Format (Version 1.4.0-pre.2*)
|
8 |
+
*Version 1.3.0 Sentis files are not compatible with 1.4.0 and need to be recreated/downloaded
|
9 |
|
10 |
This is a small image classification model that works in Unity 2023. It is based on [MobileNet V2](https://arxiv.org/abs/1801.04381)
|
11 |
|
12 |
## How to Use
|
13 |
* Create a new scene in Unity 2023
|
14 |
+
* Install `com.unity.sentis` version `1.4.0-pre.2` from the package manager
|
15 |
* Add the C# script to the Main Camera
|
16 |
+
* Drag the `mobilenet_v2.sentis` model onto the `modelAsset `field
|
17 |
* Drag the `class_desc.txt` on to the `labelsAsset` field
|
18 |
* Drag one of the sample images on to the inputImage field in the inspector.
|
19 |
* Press play and the result of the prediction will print to the console window.
|
RunMobileNet.cs
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
|
2 |
using Unity.Sentis;
|
3 |
using UnityEngine;
|
4 |
-
|
|
|
5 |
/*
|
6 |
* MovileNetV2 Inference Script
|
7 |
* ============================
|
@@ -18,6 +19,9 @@ using UnityEngine;
|
|
18 |
|
19 |
public class RunMobileNet : MonoBehaviour
|
20 |
{
|
|
|
|
|
|
|
21 |
const string modelName = "mobilenet_v2.sentis";
|
22 |
|
23 |
//The image to classify here:
|
@@ -26,32 +30,42 @@ public class RunMobileNet : MonoBehaviour
|
|
26 |
//Link class_desc.txt here:
|
27 |
public TextAsset labelsAsset;
|
28 |
|
29 |
-
//All images are resized to these values
|
30 |
const int imageHeight = 224;
|
31 |
const int imageWidth = 224;
|
32 |
|
33 |
const BackendType backend = BackendType.GPUCompute;
|
34 |
-
|
35 |
private IWorker engine;
|
36 |
private string[] labels;
|
37 |
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
void Start()
|
42 |
{
|
43 |
-
//These are used for tensor operations
|
44 |
-
allocator = new TensorCachingAllocator();
|
45 |
-
ops = WorkerFactory.CreateOps(backend, allocator);
|
46 |
|
47 |
//Parse neural net labels
|
48 |
labels = labelsAsset.text.Split('\n');
|
49 |
|
50 |
-
//Load model
|
51 |
-
model = ModelLoader.Load(Application.streamingAssetsPath
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
//Setup the engine to run the model
|
54 |
-
engine = WorkerFactory.CreateWorker(backend,
|
55 |
|
56 |
//Execute inference
|
57 |
ExecuteML();
|
@@ -60,51 +74,39 @@ public class RunMobileNet : MonoBehaviour
|
|
60 |
public void ExecuteML()
|
61 |
{
|
62 |
//Preprocess image for input
|
63 |
-
using var
|
64 |
-
using var input = Normalise(rawinput);
|
65 |
|
66 |
//Execute neural net
|
67 |
engine.Execute(input);
|
68 |
|
69 |
//Read output tensor
|
70 |
-
var
|
71 |
-
var
|
72 |
-
|
|
|
73 |
|
74 |
//Select the best output class and print the results
|
75 |
-
var
|
76 |
-
var
|
77 |
-
|
78 |
-
output.MakeReadable();
|
79 |
-
var accuracy = output[res];
|
80 |
|
81 |
//The result is output to the console window
|
82 |
int percent = Mathf.FloorToInt(accuracy * 100f + 0.5f);
|
83 |
-
Debug.Log($"{
|
84 |
|
85 |
//Clean memory
|
86 |
Resources.UnloadUnusedAssets();
|
87 |
}
|
88 |
|
89 |
//This scales and shifts the RGB values for input into the model
|
90 |
-
|
91 |
{
|
92 |
-
|
93 |
-
{
|
94 |
-
1/0.229f, 1/0.224f, 1/0.225f
|
95 |
-
});
|
96 |
-
using var P = new TensorFloat(new TensorShape(1, 3, 1, 1), new float[]
|
97 |
-
{
|
98 |
-
0.485f, 0.456f, 0.406f
|
99 |
-
});
|
100 |
-
using var image2 = ops.Sub(image, P);
|
101 |
-
return ops.Mul(image2, M);
|
102 |
}
|
103 |
|
104 |
private void OnDestroy()
|
105 |
{
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
}
|
110 |
}
|
|
|
1 |
+
using System.Collections.Generic;
|
2 |
using Unity.Sentis;
|
3 |
using UnityEngine;
|
4 |
+
using System.IO;
|
5 |
+
using FF = Unity.Sentis.Functional;
|
6 |
/*
|
7 |
* MovileNetV2 Inference Script
|
8 |
* ============================
|
|
|
19 |
|
20 |
public class RunMobileNet : MonoBehaviour
|
21 |
{
|
22 |
+
//draw the sentis file here:
|
23 |
+
public ModelAsset modelAsset;
|
24 |
+
|
25 |
const string modelName = "mobilenet_v2.sentis";
|
26 |
|
27 |
//The image to classify here:
|
|
|
30 |
//Link class_desc.txt here:
|
31 |
public TextAsset labelsAsset;
|
32 |
|
33 |
+
//All images are resized to these values to go into the model
|
34 |
const int imageHeight = 224;
|
35 |
const int imageWidth = 224;
|
36 |
|
37 |
const BackendType backend = BackendType.GPUCompute;
|
38 |
+
|
39 |
private IWorker engine;
|
40 |
private string[] labels;
|
41 |
|
42 |
+
//Used to normalise the input RGB values
|
43 |
+
TensorFloat mulRGB = new TensorFloat(new TensorShape(1, 3, 1, 1), new float[] { 1 / 0.229f, 1 / 0.224f, 1 / 0.225f });
|
44 |
+
TensorFloat shiftRGB = new TensorFloat(new TensorShape(1, 3, 1, 1), new float[] { 0.485f, 0.456f, 0.406f });
|
45 |
|
46 |
void Start()
|
47 |
{
|
|
|
|
|
|
|
48 |
|
49 |
//Parse neural net labels
|
50 |
labels = labelsAsset.text.Split('\n');
|
51 |
|
52 |
+
//Load model from file or asset
|
53 |
+
//var model = ModelLoader.Load(Path.Join(Application.streamingAssetsPath, modelName));
|
54 |
+
var model = ModelLoader.Load(modelAsset);
|
55 |
+
|
56 |
+
//We modify the model to normalise the input RGB values and select the highest prediction
|
57 |
+
//probability and item number
|
58 |
+
var model2 = FF.Compile(
|
59 |
+
input =>
|
60 |
+
{
|
61 |
+
var probability = model.Forward(NormaliseRGB(input))[0];
|
62 |
+
return (FF.ReduceMax(probability, 1), FF.ArgMax(probability, 1));
|
63 |
+
},
|
64 |
+
model.inputs[0]
|
65 |
+
);
|
66 |
|
67 |
//Setup the engine to run the model
|
68 |
+
engine = WorkerFactory.CreateWorker(backend, model2);
|
69 |
|
70 |
//Execute inference
|
71 |
ExecuteML();
|
|
|
74 |
public void ExecuteML()
|
75 |
{
|
76 |
//Preprocess image for input
|
77 |
+
using var input = TextureConverter.ToTensor(inputImage, imageWidth, imageHeight, 3);
|
|
|
78 |
|
79 |
//Execute neural net
|
80 |
engine.Execute(input);
|
81 |
|
82 |
//Read output tensor
|
83 |
+
var probability = engine.PeekOutput("output_0") as TensorFloat;
|
84 |
+
var item = engine.PeekOutput("output_1") as TensorInt;
|
85 |
+
item.CompleteOperationsAndDownload();
|
86 |
+
probability.CompleteOperationsAndDownload();
|
87 |
|
88 |
//Select the best output class and print the results
|
89 |
+
var ID = item[0];
|
90 |
+
var accuracy = probability[0];
|
|
|
|
|
|
|
91 |
|
92 |
//The result is output to the console window
|
93 |
int percent = Mathf.FloorToInt(accuracy * 100f + 0.5f);
|
94 |
+
Debug.Log($"Prediction: {labels[ID]} {percent}﹪");
|
95 |
|
96 |
//Clean memory
|
97 |
Resources.UnloadUnusedAssets();
|
98 |
}
|
99 |
|
100 |
//This scales and shifts the RGB values for input into the model
|
101 |
+
FunctionalTensor NormaliseRGB(FunctionalTensor image)
|
102 |
{
|
103 |
+
return (image - FunctionalTensor.FromTensor(shiftRGB)) * FunctionalTensor.FromTensor(mulRGB);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
}
|
105 |
|
106 |
private void OnDestroy()
|
107 |
{
|
108 |
+
mulRGB?.Dispose();
|
109 |
+
shiftRGB?.Dispose();
|
110 |
+
engine?.Dispose();
|
111 |
}
|
112 |
}
|
info.json
CHANGED
@@ -9,6 +9,6 @@
|
|
9 |
"class_desc.txt"
|
10 |
],
|
11 |
"version":[
|
12 |
-
"1.
|
13 |
]
|
14 |
}
|
|
|
9 |
"class_desc.txt"
|
10 |
],
|
11 |
"version":[
|
12 |
+
"1.4.0"
|
13 |
]
|
14 |
}
|
mobilenet_v2.sentis
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:907d42cf325f7d2457b8ccdd12fabb5bea882d2757c3bb5bc57042e5ec6533bc
|
3 |
+
size 13989036
|