nielsbantilan
commited on
Commit
·
9c519d5
1
Parent(s):
716ac84
Upload folder using huggingface_hub
Browse files- checkpoint-2000/config.json +26 -0
- checkpoint-2000/generation_config.json +6 -0
- checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/latest +1 -0
- checkpoint-2000/pytorch_model.bin +3 -0
- checkpoint-2000/rng_state_0.pth +3 -0
- checkpoint-2000/rng_state_1.pth +3 -0
- checkpoint-2000/rng_state_2.pth +3 -0
- checkpoint-2000/rng_state_3.pth +3 -0
- checkpoint-2000/rng_state_4.pth +3 -0
- checkpoint-2000/rng_state_5.pth +3 -0
- checkpoint-2000/rng_state_6.pth +3 -0
- checkpoint-2000/rng_state_7.pth +3 -0
- checkpoint-2000/special_tokens_map.json +6 -0
- checkpoint-2000/tokenizer.json +0 -0
- checkpoint-2000/tokenizer_config.json +11 -0
- checkpoint-2000/trainer_state.json +1216 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-2000/zero_to_fp32.py +483 -0
- flyte_training_config.json +1 -1
- pytorch_model.bin +1 -1
- trainer_state.json +452 -152
- training_args.bin +1 -1
checkpoint-2000/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "togethercomputer/RedPajama-INCITE-Base-3B-v1",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": 0.1,
|
8 |
+
"eos_token_id": 0,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 2560,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 10240,
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
+
"max_position_embeddings": 2048,
|
15 |
+
"model_type": "gpt_neox",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"rotary_emb_base": 10000,
|
19 |
+
"rotary_pct": 1.0,
|
20 |
+
"tie_word_embeddings": false,
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.29.2",
|
23 |
+
"use_cache": true,
|
24 |
+
"use_parallel_residual": false,
|
25 |
+
"vocab_size": 50432
|
26 |
+
}
|
checkpoint-2000/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.29.2"
|
6 |
+
}
|
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae0f6f03e2b9a042e7040d37571dda22bd0d3e950df03ed5e4680affaebe259b
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6469298c8ace90fbc7971259714e479bb9737cc6c51f64a35d18e328c12e9ad5
|
3 |
+
size 4163799934
|
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b607792f96f06e258eec60ef22dcc98b30de0ad9bd562bc74a3a0f3e27dbba8
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:befae2d8bb07e538242bcaa6b5a2f05b78e65d2ce137fc40418c066a1c83c438
|
3 |
+
size 4163799934
|
checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f97bc04e27ce3ffe3ce67efabfa7e39013a771ebe34c9c0f1209c5ba79f9726
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fb121882454f4bcd5bc7d138491c07425a145392908fc4ebb0ffa8fbec0127e
|
3 |
+
size 4163799934
|
checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2148d28ad84e3ca2dbea7cdb4ea8ad87377dc902e70eb9dc8954f489a029d448
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beff7de1f10add0f38eec5deb06b9b5b0be956388fb7c9b7ad25013b6beddca3
|
3 |
+
size 4163799934
|
checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68b801eff4581db2df051b70bc0ad27541d48905c1a5a62087906cd1155a05f2
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:421b5a808ae76da386bf0d4b2d2f6e8f4b5249726379793dc781abba11cced76
|
3 |
+
size 4163799934
|
checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37d12e876d126a72a887d165ebc0f7e0da7a0254a0a99441add1a427778d055
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b68830f940fb8d8571a2a3b8e53bc68672f2ec72b2fb64856d81f6d366acba4
|
3 |
+
size 4163799934
|
checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99dd15972281c642940b47f190323f2794d09fe4692091f47139f923f40bea9a
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa08c5fc751191064a192d03ca7b5e6964aff16f3a55b121e71c924e2b6155e0
|
3 |
+
size 4163799934
|
checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d07c4e5ee7ef1707a189669fb0567221e81a6e3d6924efa5f21097e76c7e3b
|
3 |
+
size 134451731
|
checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f1e6a8b930a05f5e00f10db83dc5c6766abd1be24fffa44ff3db705684db599
|
3 |
+
size 4163799934
|
checkpoint-2000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2000
|
checkpoint-2000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b41d1298850da0d466fd2e4c29f479ff3b63ee88a71380e65a10da57e5a1b86
|
3 |
+
size 5686106713
|
checkpoint-2000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f861394d4c199f79c4525d5c4e4a61b3b63c86a2b1d3dc24b3dc7a2cc4fa854
|
3 |
+
size 21687
|
checkpoint-2000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd08b19f43c113c5022aca7a2acf0240613bc8251cd7af1148f3c44559e35154
|
3 |
+
size 21687
|
checkpoint-2000/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c00d88da7de57a836e00899e7c78e54c079c1a1fe1e7043fc0be33366a97fe0
|
3 |
+
size 21687
|
checkpoint-2000/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6188a73b12856dc180d93425453d17da5bdd83832db408e0f7d2083eaa43ba5
|
3 |
+
size 21687
|
checkpoint-2000/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d19b7bd12d313b6f367b34796e48df3b04d36d8495ca95d863ee4f2336c70e4e
|
3 |
+
size 21687
|
checkpoint-2000/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6256ffefcfd855ee249d911b58b6816ea62a0d91948199d62ecf03d4c97de31
|
3 |
+
size 21687
|
checkpoint-2000/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:547eb574539d57fcd695b847934f427c088fd30c5dbc54a5f3359143a7c4b460
|
3 |
+
size 21687
|
checkpoint-2000/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:181de8aa271fc693ebecd232d432aae59ec9f7545015a370608182c9b36e0cfa
|
3 |
+
size 21687
|
checkpoint-2000/special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"unk_token": "<|endoftext|>"
|
6 |
+
}
|
checkpoint-2000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2000/tokenizer_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"padding_side": "right",
|
9 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
10 |
+
"unk_token": "<|endoftext|>"
|
11 |
+
}
|
checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,1216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1333.3333333333333,
|
5 |
+
"global_step": 2000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 6.67,
|
12 |
+
"learning_rate": 9.46713625058711e-06,
|
13 |
+
"loss": 2.0455,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 13.33,
|
18 |
+
"learning_rate": 1.3783995508828243e-05,
|
19 |
+
"loss": 1.425,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 20.0,
|
24 |
+
"learning_rate": 1.603472631319529e-05,
|
25 |
+
"loss": 0.5237,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 26.67,
|
30 |
+
"learning_rate": 1.7567641489142956e-05,
|
31 |
+
"loss": 0.1184,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 33.33,
|
36 |
+
"learning_rate": 1.8731528764550483e-05,
|
37 |
+
"loss": 0.0585,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 40.0,
|
42 |
+
"learning_rate": 1.9670033192067303e-05,
|
43 |
+
"loss": 0.0411,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 46.67,
|
48 |
+
"learning_rate": 2e-05,
|
49 |
+
"loss": 0.0321,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 53.33,
|
54 |
+
"learning_rate": 2e-05,
|
55 |
+
"loss": 0.0232,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 60.0,
|
60 |
+
"learning_rate": 2e-05,
|
61 |
+
"loss": 0.0182,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 66.67,
|
66 |
+
"learning_rate": 2e-05,
|
67 |
+
"loss": 0.0137,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 73.33,
|
72 |
+
"learning_rate": 2e-05,
|
73 |
+
"loss": 0.0111,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 80.0,
|
78 |
+
"learning_rate": 2e-05,
|
79 |
+
"loss": 0.0096,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 86.67,
|
84 |
+
"learning_rate": 2e-05,
|
85 |
+
"loss": 0.0085,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 93.33,
|
90 |
+
"learning_rate": 2e-05,
|
91 |
+
"loss": 0.0078,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 100.0,
|
96 |
+
"learning_rate": 2e-05,
|
97 |
+
"loss": 0.007,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 106.67,
|
102 |
+
"learning_rate": 2e-05,
|
103 |
+
"loss": 0.0066,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 113.33,
|
108 |
+
"learning_rate": 2e-05,
|
109 |
+
"loss": 0.0061,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 120.0,
|
114 |
+
"learning_rate": 2e-05,
|
115 |
+
"loss": 0.0057,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 126.67,
|
120 |
+
"learning_rate": 2e-05,
|
121 |
+
"loss": 0.0054,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 133.33,
|
126 |
+
"learning_rate": 2e-05,
|
127 |
+
"loss": 0.0052,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 140.0,
|
132 |
+
"learning_rate": 2e-05,
|
133 |
+
"loss": 0.0049,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 146.67,
|
138 |
+
"learning_rate": 2e-05,
|
139 |
+
"loss": 0.0048,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 153.33,
|
144 |
+
"learning_rate": 2e-05,
|
145 |
+
"loss": 0.0048,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 160.0,
|
150 |
+
"learning_rate": 2e-05,
|
151 |
+
"loss": 0.0045,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 166.67,
|
156 |
+
"learning_rate": 2e-05,
|
157 |
+
"loss": 0.0046,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 173.33,
|
162 |
+
"learning_rate": 2e-05,
|
163 |
+
"loss": 0.0045,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 180.0,
|
168 |
+
"learning_rate": 2e-05,
|
169 |
+
"loss": 0.0041,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 186.67,
|
174 |
+
"learning_rate": 2e-05,
|
175 |
+
"loss": 0.0044,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 193.33,
|
180 |
+
"learning_rate": 2e-05,
|
181 |
+
"loss": 0.0042,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 200.0,
|
186 |
+
"learning_rate": 2e-05,
|
187 |
+
"loss": 0.0042,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 206.67,
|
192 |
+
"learning_rate": 2e-05,
|
193 |
+
"loss": 0.0041,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 213.33,
|
198 |
+
"learning_rate": 2e-05,
|
199 |
+
"loss": 0.0041,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 220.0,
|
204 |
+
"learning_rate": 2e-05,
|
205 |
+
"loss": 0.0041,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 226.67,
|
210 |
+
"learning_rate": 2e-05,
|
211 |
+
"loss": 0.004,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 233.33,
|
216 |
+
"learning_rate": 2e-05,
|
217 |
+
"loss": 0.004,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 240.0,
|
222 |
+
"learning_rate": 2e-05,
|
223 |
+
"loss": 0.0038,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 246.67,
|
228 |
+
"learning_rate": 2e-05,
|
229 |
+
"loss": 0.004,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 253.33,
|
234 |
+
"learning_rate": 2e-05,
|
235 |
+
"loss": 0.004,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 260.0,
|
240 |
+
"learning_rate": 2e-05,
|
241 |
+
"loss": 0.0041,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 266.67,
|
246 |
+
"learning_rate": 2e-05,
|
247 |
+
"loss": 0.0039,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 273.33,
|
252 |
+
"learning_rate": 2e-05,
|
253 |
+
"loss": 0.0037,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 280.0,
|
258 |
+
"learning_rate": 2e-05,
|
259 |
+
"loss": 0.0038,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 286.67,
|
264 |
+
"learning_rate": 2e-05,
|
265 |
+
"loss": 0.0038,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 293.33,
|
270 |
+
"learning_rate": 2e-05,
|
271 |
+
"loss": 0.004,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 300.0,
|
276 |
+
"learning_rate": 2e-05,
|
277 |
+
"loss": 0.0039,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 306.67,
|
282 |
+
"learning_rate": 2e-05,
|
283 |
+
"loss": 0.0038,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 313.33,
|
288 |
+
"learning_rate": 2e-05,
|
289 |
+
"loss": 0.0037,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 320.0,
|
294 |
+
"learning_rate": 2e-05,
|
295 |
+
"loss": 0.0038,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 326.67,
|
300 |
+
"learning_rate": 2e-05,
|
301 |
+
"loss": 0.0038,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 333.33,
|
306 |
+
"learning_rate": 2e-05,
|
307 |
+
"loss": 0.0037,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 340.0,
|
312 |
+
"learning_rate": 2e-05,
|
313 |
+
"loss": 0.0038,
|
314 |
+
"step": 510
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 346.67,
|
318 |
+
"learning_rate": 2e-05,
|
319 |
+
"loss": 0.004,
|
320 |
+
"step": 520
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 353.33,
|
324 |
+
"learning_rate": 2e-05,
|
325 |
+
"loss": 0.0037,
|
326 |
+
"step": 530
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 360.0,
|
330 |
+
"learning_rate": 2e-05,
|
331 |
+
"loss": 0.0039,
|
332 |
+
"step": 540
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 366.67,
|
336 |
+
"learning_rate": 2e-05,
|
337 |
+
"loss": 0.0045,
|
338 |
+
"step": 550
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 373.33,
|
342 |
+
"learning_rate": 2e-05,
|
343 |
+
"loss": 0.005,
|
344 |
+
"step": 560
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 380.0,
|
348 |
+
"learning_rate": 2e-05,
|
349 |
+
"loss": 0.014,
|
350 |
+
"step": 570
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 386.67,
|
354 |
+
"learning_rate": 2e-05,
|
355 |
+
"loss": 0.0149,
|
356 |
+
"step": 580
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 393.33,
|
360 |
+
"learning_rate": 2e-05,
|
361 |
+
"loss": 0.0084,
|
362 |
+
"step": 590
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 400.0,
|
366 |
+
"learning_rate": 2e-05,
|
367 |
+
"loss": 0.0072,
|
368 |
+
"step": 600
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 406.67,
|
372 |
+
"learning_rate": 2e-05,
|
373 |
+
"loss": 0.0058,
|
374 |
+
"step": 610
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 413.33,
|
378 |
+
"learning_rate": 2e-05,
|
379 |
+
"loss": 0.0053,
|
380 |
+
"step": 620
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 420.0,
|
384 |
+
"learning_rate": 2e-05,
|
385 |
+
"loss": 0.0051,
|
386 |
+
"step": 630
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 426.67,
|
390 |
+
"learning_rate": 2e-05,
|
391 |
+
"loss": 0.0047,
|
392 |
+
"step": 640
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 433.33,
|
396 |
+
"learning_rate": 2e-05,
|
397 |
+
"loss": 0.0045,
|
398 |
+
"step": 650
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 440.0,
|
402 |
+
"learning_rate": 2e-05,
|
403 |
+
"loss": 0.0043,
|
404 |
+
"step": 660
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 446.67,
|
408 |
+
"learning_rate": 2e-05,
|
409 |
+
"loss": 0.0041,
|
410 |
+
"step": 670
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 453.33,
|
414 |
+
"learning_rate": 2e-05,
|
415 |
+
"loss": 0.0039,
|
416 |
+
"step": 680
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 460.0,
|
420 |
+
"learning_rate": 2e-05,
|
421 |
+
"loss": 0.0038,
|
422 |
+
"step": 690
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 466.67,
|
426 |
+
"learning_rate": 2e-05,
|
427 |
+
"loss": 0.004,
|
428 |
+
"step": 700
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 473.33,
|
432 |
+
"learning_rate": 2e-05,
|
433 |
+
"loss": 0.004,
|
434 |
+
"step": 710
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 480.0,
|
438 |
+
"learning_rate": 2e-05,
|
439 |
+
"loss": 0.0036,
|
440 |
+
"step": 720
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 486.67,
|
444 |
+
"learning_rate": 2e-05,
|
445 |
+
"loss": 0.0036,
|
446 |
+
"step": 730
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 493.33,
|
450 |
+
"learning_rate": 2e-05,
|
451 |
+
"loss": 0.0037,
|
452 |
+
"step": 740
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 500.0,
|
456 |
+
"learning_rate": 2e-05,
|
457 |
+
"loss": 0.0036,
|
458 |
+
"step": 750
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 506.67,
|
462 |
+
"learning_rate": 2e-05,
|
463 |
+
"loss": 0.0034,
|
464 |
+
"step": 760
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 513.33,
|
468 |
+
"learning_rate": 2e-05,
|
469 |
+
"loss": 0.0035,
|
470 |
+
"step": 770
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 520.0,
|
474 |
+
"learning_rate": 2e-05,
|
475 |
+
"loss": 0.0035,
|
476 |
+
"step": 780
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 526.67,
|
480 |
+
"learning_rate": 2e-05,
|
481 |
+
"loss": 0.0035,
|
482 |
+
"step": 790
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 533.33,
|
486 |
+
"learning_rate": 2e-05,
|
487 |
+
"loss": 0.0034,
|
488 |
+
"step": 800
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 540.0,
|
492 |
+
"learning_rate": 2e-05,
|
493 |
+
"loss": 0.0035,
|
494 |
+
"step": 810
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 546.67,
|
498 |
+
"learning_rate": 2e-05,
|
499 |
+
"loss": 0.0034,
|
500 |
+
"step": 820
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 553.33,
|
504 |
+
"learning_rate": 2e-05,
|
505 |
+
"loss": 0.0037,
|
506 |
+
"step": 830
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 560.0,
|
510 |
+
"learning_rate": 2e-05,
|
511 |
+
"loss": 0.0034,
|
512 |
+
"step": 840
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 566.67,
|
516 |
+
"learning_rate": 2e-05,
|
517 |
+
"loss": 0.0034,
|
518 |
+
"step": 850
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 573.33,
|
522 |
+
"learning_rate": 2e-05,
|
523 |
+
"loss": 0.0034,
|
524 |
+
"step": 860
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 580.0,
|
528 |
+
"learning_rate": 2e-05,
|
529 |
+
"loss": 0.0033,
|
530 |
+
"step": 870
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 586.67,
|
534 |
+
"learning_rate": 2e-05,
|
535 |
+
"loss": 0.0035,
|
536 |
+
"step": 880
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 593.33,
|
540 |
+
"learning_rate": 2e-05,
|
541 |
+
"loss": 0.0033,
|
542 |
+
"step": 890
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 600.0,
|
546 |
+
"learning_rate": 2e-05,
|
547 |
+
"loss": 0.0035,
|
548 |
+
"step": 900
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 606.67,
|
552 |
+
"learning_rate": 2e-05,
|
553 |
+
"loss": 0.0035,
|
554 |
+
"step": 910
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 613.33,
|
558 |
+
"learning_rate": 2e-05,
|
559 |
+
"loss": 0.0034,
|
560 |
+
"step": 920
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 620.0,
|
564 |
+
"learning_rate": 2e-05,
|
565 |
+
"loss": 0.0033,
|
566 |
+
"step": 930
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 626.67,
|
570 |
+
"learning_rate": 2e-05,
|
571 |
+
"loss": 0.0034,
|
572 |
+
"step": 940
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 633.33,
|
576 |
+
"learning_rate": 2e-05,
|
577 |
+
"loss": 0.0035,
|
578 |
+
"step": 950
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 640.0,
|
582 |
+
"learning_rate": 2e-05,
|
583 |
+
"loss": 0.0034,
|
584 |
+
"step": 960
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 646.67,
|
588 |
+
"learning_rate": 2e-05,
|
589 |
+
"loss": 0.0035,
|
590 |
+
"step": 970
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 653.33,
|
594 |
+
"learning_rate": 2e-05,
|
595 |
+
"loss": 0.0034,
|
596 |
+
"step": 980
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 660.0,
|
600 |
+
"learning_rate": 2e-05,
|
601 |
+
"loss": 0.0035,
|
602 |
+
"step": 990
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 666.67,
|
606 |
+
"learning_rate": 2e-05,
|
607 |
+
"loss": 0.0034,
|
608 |
+
"step": 1000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 673.33,
|
612 |
+
"learning_rate": 2e-05,
|
613 |
+
"loss": 0.0035,
|
614 |
+
"step": 1010
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 680.0,
|
618 |
+
"learning_rate": 2e-05,
|
619 |
+
"loss": 0.0034,
|
620 |
+
"step": 1020
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 686.67,
|
624 |
+
"learning_rate": 2e-05,
|
625 |
+
"loss": 0.0034,
|
626 |
+
"step": 1030
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 693.33,
|
630 |
+
"learning_rate": 2e-05,
|
631 |
+
"loss": 0.0033,
|
632 |
+
"step": 1040
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 700.0,
|
636 |
+
"learning_rate": 2e-05,
|
637 |
+
"loss": 0.0033,
|
638 |
+
"step": 1050
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 706.67,
|
642 |
+
"learning_rate": 2e-05,
|
643 |
+
"loss": 0.0033,
|
644 |
+
"step": 1060
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 713.33,
|
648 |
+
"learning_rate": 2e-05,
|
649 |
+
"loss": 0.0035,
|
650 |
+
"step": 1070
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 720.0,
|
654 |
+
"learning_rate": 2e-05,
|
655 |
+
"loss": 0.0035,
|
656 |
+
"step": 1080
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 726.67,
|
660 |
+
"learning_rate": 2e-05,
|
661 |
+
"loss": 0.0035,
|
662 |
+
"step": 1090
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 733.33,
|
666 |
+
"learning_rate": 2e-05,
|
667 |
+
"loss": 0.0034,
|
668 |
+
"step": 1100
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 740.0,
|
672 |
+
"learning_rate": 2e-05,
|
673 |
+
"loss": 0.0034,
|
674 |
+
"step": 1110
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 746.67,
|
678 |
+
"learning_rate": 2e-05,
|
679 |
+
"loss": 0.0034,
|
680 |
+
"step": 1120
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 753.33,
|
684 |
+
"learning_rate": 2e-05,
|
685 |
+
"loss": 0.0035,
|
686 |
+
"step": 1130
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 760.0,
|
690 |
+
"learning_rate": 2e-05,
|
691 |
+
"loss": 0.0035,
|
692 |
+
"step": 1140
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 766.67,
|
696 |
+
"learning_rate": 2e-05,
|
697 |
+
"loss": 0.0039,
|
698 |
+
"step": 1150
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 773.33,
|
702 |
+
"learning_rate": 2e-05,
|
703 |
+
"loss": 0.0049,
|
704 |
+
"step": 1160
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 780.0,
|
708 |
+
"learning_rate": 2e-05,
|
709 |
+
"loss": 0.0049,
|
710 |
+
"step": 1170
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 786.67,
|
714 |
+
"learning_rate": 2e-05,
|
715 |
+
"loss": 0.0048,
|
716 |
+
"step": 1180
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 793.33,
|
720 |
+
"learning_rate": 2e-05,
|
721 |
+
"loss": 0.0048,
|
722 |
+
"step": 1190
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 800.0,
|
726 |
+
"learning_rate": 2e-05,
|
727 |
+
"loss": 0.0046,
|
728 |
+
"step": 1200
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 806.67,
|
732 |
+
"learning_rate": 2e-05,
|
733 |
+
"loss": 0.0041,
|
734 |
+
"step": 1210
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 813.33,
|
738 |
+
"learning_rate": 2e-05,
|
739 |
+
"loss": 0.0038,
|
740 |
+
"step": 1220
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 820.0,
|
744 |
+
"learning_rate": 2e-05,
|
745 |
+
"loss": 0.0043,
|
746 |
+
"step": 1230
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 826.67,
|
750 |
+
"learning_rate": 2e-05,
|
751 |
+
"loss": 0.0042,
|
752 |
+
"step": 1240
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 833.33,
|
756 |
+
"learning_rate": 2e-05,
|
757 |
+
"loss": 0.004,
|
758 |
+
"step": 1250
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 840.0,
|
762 |
+
"learning_rate": 2e-05,
|
763 |
+
"loss": 0.0037,
|
764 |
+
"step": 1260
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 846.67,
|
768 |
+
"learning_rate": 2e-05,
|
769 |
+
"loss": 0.0043,
|
770 |
+
"step": 1270
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 853.33,
|
774 |
+
"learning_rate": 2e-05,
|
775 |
+
"loss": 0.0037,
|
776 |
+
"step": 1280
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 860.0,
|
780 |
+
"learning_rate": 2e-05,
|
781 |
+
"loss": 0.004,
|
782 |
+
"step": 1290
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 866.67,
|
786 |
+
"learning_rate": 2e-05,
|
787 |
+
"loss": 0.004,
|
788 |
+
"step": 1300
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 873.33,
|
792 |
+
"learning_rate": 2e-05,
|
793 |
+
"loss": 0.0051,
|
794 |
+
"step": 1310
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 880.0,
|
798 |
+
"learning_rate": 2e-05,
|
799 |
+
"loss": 0.0127,
|
800 |
+
"step": 1320
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 886.67,
|
804 |
+
"learning_rate": 2e-05,
|
805 |
+
"loss": 0.0082,
|
806 |
+
"step": 1330
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 893.33,
|
810 |
+
"learning_rate": 2e-05,
|
811 |
+
"loss": 0.0193,
|
812 |
+
"step": 1340
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 900.0,
|
816 |
+
"learning_rate": 2e-05,
|
817 |
+
"loss": 0.0072,
|
818 |
+
"step": 1350
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 906.67,
|
822 |
+
"learning_rate": 2e-05,
|
823 |
+
"loss": 0.0055,
|
824 |
+
"step": 1360
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 913.33,
|
828 |
+
"learning_rate": 2e-05,
|
829 |
+
"loss": 0.0052,
|
830 |
+
"step": 1370
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 920.0,
|
834 |
+
"learning_rate": 2e-05,
|
835 |
+
"loss": 0.0045,
|
836 |
+
"step": 1380
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 926.67,
|
840 |
+
"learning_rate": 2e-05,
|
841 |
+
"loss": 0.0042,
|
842 |
+
"step": 1390
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 933.33,
|
846 |
+
"learning_rate": 2e-05,
|
847 |
+
"loss": 0.0042,
|
848 |
+
"step": 1400
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 940.0,
|
852 |
+
"learning_rate": 2e-05,
|
853 |
+
"loss": 0.0037,
|
854 |
+
"step": 1410
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 946.67,
|
858 |
+
"learning_rate": 2e-05,
|
859 |
+
"loss": 0.0037,
|
860 |
+
"step": 1420
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 953.33,
|
864 |
+
"learning_rate": 2e-05,
|
865 |
+
"loss": 0.0038,
|
866 |
+
"step": 1430
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 960.0,
|
870 |
+
"learning_rate": 2e-05,
|
871 |
+
"loss": 0.0036,
|
872 |
+
"step": 1440
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 966.67,
|
876 |
+
"learning_rate": 2e-05,
|
877 |
+
"loss": 0.0037,
|
878 |
+
"step": 1450
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 973.33,
|
882 |
+
"learning_rate": 2e-05,
|
883 |
+
"loss": 0.0035,
|
884 |
+
"step": 1460
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 980.0,
|
888 |
+
"learning_rate": 2e-05,
|
889 |
+
"loss": 0.0037,
|
890 |
+
"step": 1470
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 986.67,
|
894 |
+
"learning_rate": 2e-05,
|
895 |
+
"loss": 0.0035,
|
896 |
+
"step": 1480
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 993.33,
|
900 |
+
"learning_rate": 2e-05,
|
901 |
+
"loss": 0.0034,
|
902 |
+
"step": 1490
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 1000.0,
|
906 |
+
"learning_rate": 2e-05,
|
907 |
+
"loss": 0.0035,
|
908 |
+
"step": 1500
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 1006.67,
|
912 |
+
"learning_rate": 2e-05,
|
913 |
+
"loss": 0.0035,
|
914 |
+
"step": 1510
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 1013.33,
|
918 |
+
"learning_rate": 2e-05,
|
919 |
+
"loss": 0.0035,
|
920 |
+
"step": 1520
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 1020.0,
|
924 |
+
"learning_rate": 2e-05,
|
925 |
+
"loss": 0.0034,
|
926 |
+
"step": 1530
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1026.67,
|
930 |
+
"learning_rate": 2e-05,
|
931 |
+
"loss": 0.0035,
|
932 |
+
"step": 1540
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1033.33,
|
936 |
+
"learning_rate": 2e-05,
|
937 |
+
"loss": 0.0034,
|
938 |
+
"step": 1550
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 1040.0,
|
942 |
+
"learning_rate": 2e-05,
|
943 |
+
"loss": 0.0034,
|
944 |
+
"step": 1560
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1046.67,
|
948 |
+
"learning_rate": 2e-05,
|
949 |
+
"loss": 0.0032,
|
950 |
+
"step": 1570
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1053.33,
|
954 |
+
"learning_rate": 2e-05,
|
955 |
+
"loss": 0.0032,
|
956 |
+
"step": 1580
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 1060.0,
|
960 |
+
"learning_rate": 2e-05,
|
961 |
+
"loss": 0.0034,
|
962 |
+
"step": 1590
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 1066.67,
|
966 |
+
"learning_rate": 2e-05,
|
967 |
+
"loss": 0.0034,
|
968 |
+
"step": 1600
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1073.33,
|
972 |
+
"learning_rate": 2e-05,
|
973 |
+
"loss": 0.0033,
|
974 |
+
"step": 1610
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1080.0,
|
978 |
+
"learning_rate": 2e-05,
|
979 |
+
"loss": 0.0033,
|
980 |
+
"step": 1620
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 1086.67,
|
984 |
+
"learning_rate": 2e-05,
|
985 |
+
"loss": 0.0034,
|
986 |
+
"step": 1630
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1093.33,
|
990 |
+
"learning_rate": 2e-05,
|
991 |
+
"loss": 0.0032,
|
992 |
+
"step": 1640
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 1100.0,
|
996 |
+
"learning_rate": 2e-05,
|
997 |
+
"loss": 0.0032,
|
998 |
+
"step": 1650
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 1106.67,
|
1002 |
+
"learning_rate": 2e-05,
|
1003 |
+
"loss": 0.0032,
|
1004 |
+
"step": 1660
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1113.33,
|
1008 |
+
"learning_rate": 2e-05,
|
1009 |
+
"loss": 0.0033,
|
1010 |
+
"step": 1670
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1120.0,
|
1014 |
+
"learning_rate": 2e-05,
|
1015 |
+
"loss": 0.0033,
|
1016 |
+
"step": 1680
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1126.67,
|
1020 |
+
"learning_rate": 2e-05,
|
1021 |
+
"loss": 0.0032,
|
1022 |
+
"step": 1690
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1133.33,
|
1026 |
+
"learning_rate": 2e-05,
|
1027 |
+
"loss": 0.0032,
|
1028 |
+
"step": 1700
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1140.0,
|
1032 |
+
"learning_rate": 2e-05,
|
1033 |
+
"loss": 0.0032,
|
1034 |
+
"step": 1710
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1146.67,
|
1038 |
+
"learning_rate": 2e-05,
|
1039 |
+
"loss": 0.0033,
|
1040 |
+
"step": 1720
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1153.33,
|
1044 |
+
"learning_rate": 2e-05,
|
1045 |
+
"loss": 0.0034,
|
1046 |
+
"step": 1730
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1160.0,
|
1050 |
+
"learning_rate": 2e-05,
|
1051 |
+
"loss": 0.0034,
|
1052 |
+
"step": 1740
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1166.67,
|
1056 |
+
"learning_rate": 2e-05,
|
1057 |
+
"loss": 0.0032,
|
1058 |
+
"step": 1750
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1173.33,
|
1062 |
+
"learning_rate": 2e-05,
|
1063 |
+
"loss": 0.0033,
|
1064 |
+
"step": 1760
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 1180.0,
|
1068 |
+
"learning_rate": 2e-05,
|
1069 |
+
"loss": 0.0032,
|
1070 |
+
"step": 1770
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1186.67,
|
1074 |
+
"learning_rate": 2e-05,
|
1075 |
+
"loss": 0.0032,
|
1076 |
+
"step": 1780
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1193.33,
|
1080 |
+
"learning_rate": 2e-05,
|
1081 |
+
"loss": 0.0032,
|
1082 |
+
"step": 1790
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 1200.0,
|
1086 |
+
"learning_rate": 2e-05,
|
1087 |
+
"loss": 0.0032,
|
1088 |
+
"step": 1800
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 1206.67,
|
1092 |
+
"learning_rate": 2e-05,
|
1093 |
+
"loss": 0.0032,
|
1094 |
+
"step": 1810
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1213.33,
|
1098 |
+
"learning_rate": 2e-05,
|
1099 |
+
"loss": 0.0043,
|
1100 |
+
"step": 1820
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 1220.0,
|
1104 |
+
"learning_rate": 2e-05,
|
1105 |
+
"loss": 0.0034,
|
1106 |
+
"step": 1830
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 1226.67,
|
1110 |
+
"learning_rate": 2e-05,
|
1111 |
+
"loss": 0.0032,
|
1112 |
+
"step": 1840
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 1233.33,
|
1116 |
+
"learning_rate": 2e-05,
|
1117 |
+
"loss": 0.0034,
|
1118 |
+
"step": 1850
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 1240.0,
|
1122 |
+
"learning_rate": 2e-05,
|
1123 |
+
"loss": 0.0063,
|
1124 |
+
"step": 1860
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 1246.67,
|
1128 |
+
"learning_rate": 2e-05,
|
1129 |
+
"loss": 0.0032,
|
1130 |
+
"step": 1870
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1253.33,
|
1134 |
+
"learning_rate": 2e-05,
|
1135 |
+
"loss": 0.0061,
|
1136 |
+
"step": 1880
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1260.0,
|
1140 |
+
"learning_rate": 2e-05,
|
1141 |
+
"loss": 0.0071,
|
1142 |
+
"step": 1890
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 1266.67,
|
1146 |
+
"learning_rate": 2e-05,
|
1147 |
+
"loss": 0.0055,
|
1148 |
+
"step": 1900
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 1273.33,
|
1152 |
+
"learning_rate": 2e-05,
|
1153 |
+
"loss": 0.0053,
|
1154 |
+
"step": 1910
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 1280.0,
|
1158 |
+
"learning_rate": 2e-05,
|
1159 |
+
"loss": 0.0043,
|
1160 |
+
"step": 1920
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1286.67,
|
1164 |
+
"learning_rate": 2e-05,
|
1165 |
+
"loss": 0.0042,
|
1166 |
+
"step": 1930
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 1293.33,
|
1170 |
+
"learning_rate": 2e-05,
|
1171 |
+
"loss": 0.0039,
|
1172 |
+
"step": 1940
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1300.0,
|
1176 |
+
"learning_rate": 2e-05,
|
1177 |
+
"loss": 0.004,
|
1178 |
+
"step": 1950
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1306.67,
|
1182 |
+
"learning_rate": 2e-05,
|
1183 |
+
"loss": 0.0038,
|
1184 |
+
"step": 1960
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 1313.33,
|
1188 |
+
"learning_rate": 2e-05,
|
1189 |
+
"loss": 0.004,
|
1190 |
+
"step": 1970
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 1320.0,
|
1194 |
+
"learning_rate": 2e-05,
|
1195 |
+
"loss": 0.0038,
|
1196 |
+
"step": 1980
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1326.67,
|
1200 |
+
"learning_rate": 2e-05,
|
1201 |
+
"loss": 0.0036,
|
1202 |
+
"step": 1990
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1333.33,
|
1206 |
+
"learning_rate": 2e-05,
|
1207 |
+
"loss": 0.0036,
|
1208 |
+
"step": 2000
|
1209 |
+
}
|
1210 |
+
],
|
1211 |
+
"max_steps": 2001,
|
1212 |
+
"num_train_epochs": 2001,
|
1213 |
+
"total_flos": 841518856273920.0,
|
1214 |
+
"trial_name": null,
|
1215 |
+
"trial_params": null
|
1216 |
+
}
|
checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6f37d82e0ffda307f018bd024cb5411a96a38d758bc5f0c3bd5e051be3c5dc1
|
3 |
+
size 5563
|
checkpoint-2000/zero_to_fp32.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
3 |
+
|
4 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
5 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
6 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
7 |
+
# application.
|
8 |
+
#
|
9 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import torch
|
13 |
+
import glob
|
14 |
+
import math
|
15 |
+
import os
|
16 |
+
import re
|
17 |
+
from collections import OrderedDict
|
18 |
+
|
19 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
20 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
21 |
+
from deepspeed.utils import logger
|
22 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
23 |
+
OPTIMIZER_STATE_DICT,
|
24 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
25 |
+
FP32_FLAT_GROUPS,
|
26 |
+
ZERO_STAGE,
|
27 |
+
PARTITION_COUNT,
|
28 |
+
PARAM_SHAPES,
|
29 |
+
BUFFER_NAMES)
|
30 |
+
|
31 |
+
debug = 0
|
32 |
+
|
33 |
+
# load to cpu
|
34 |
+
device = torch.device('cpu')
|
35 |
+
|
36 |
+
|
37 |
+
def atoi(text):
|
38 |
+
return int(text) if text.isdigit() else text
|
39 |
+
|
40 |
+
|
41 |
+
def natural_keys(text):
|
42 |
+
'''
|
43 |
+
alist.sort(key=natural_keys) sorts in human order
|
44 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
45 |
+
(See Toothy's implementation in the comments)
|
46 |
+
'''
|
47 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
48 |
+
|
49 |
+
|
50 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
51 |
+
if not os.path.isdir(checkpoint_dir):
|
52 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
53 |
+
|
54 |
+
# there should be only one file
|
55 |
+
if zero_stage == 2:
|
56 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
57 |
+
elif zero_stage == 3:
|
58 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
59 |
+
|
60 |
+
if not os.path.exists(file):
|
61 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
62 |
+
|
63 |
+
return file
|
64 |
+
|
65 |
+
|
66 |
+
def get_optim_files(checkpoint_dir):
|
67 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
68 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
69 |
+
"*_optim_states.pt")),
|
70 |
+
key=natural_keys)
|
71 |
+
|
72 |
+
if len(optim_files) == 0:
|
73 |
+
raise FileNotFoundError(
|
74 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
75 |
+
|
76 |
+
return optim_files
|
77 |
+
|
78 |
+
|
79 |
+
def parse_model_state(file):
|
80 |
+
state_dict = torch.load(file, map_location=device)
|
81 |
+
|
82 |
+
if BUFFER_NAMES not in state_dict:
|
83 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
84 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
85 |
+
if debug:
|
86 |
+
print("Found buffers:", buffer_names)
|
87 |
+
|
88 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
89 |
+
buffers = {
|
90 |
+
k: v.float()
|
91 |
+
for k,
|
92 |
+
v in state_dict["module"].items() if k in buffer_names
|
93 |
+
}
|
94 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
95 |
+
|
96 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
97 |
+
|
98 |
+
return buffers, param_shapes, ds_version
|
99 |
+
|
100 |
+
|
101 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
102 |
+
|
103 |
+
total_files = len(files)
|
104 |
+
state_dicts = []
|
105 |
+
for f in files:
|
106 |
+
state_dicts.append(torch.load(f, map_location=device))
|
107 |
+
|
108 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
109 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
110 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
111 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
112 |
+
|
113 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
114 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
115 |
+
# use the max of the partition_count to get the dp world_size.
|
116 |
+
|
117 |
+
if type(world_size) is list:
|
118 |
+
world_size = max(world_size)
|
119 |
+
|
120 |
+
if world_size != total_files:
|
121 |
+
raise ValueError(
|
122 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
123 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
124 |
+
)
|
125 |
+
|
126 |
+
# the groups are named differently in each stage
|
127 |
+
if zero_stage == 2:
|
128 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
129 |
+
elif zero_stage == 3:
|
130 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
131 |
+
else:
|
132 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
133 |
+
|
134 |
+
if zero_stage == 2:
|
135 |
+
fp32_flat_groups = [
|
136 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
137 |
+
for i in range(len(state_dicts))
|
138 |
+
]
|
139 |
+
elif zero_stage == 3:
|
140 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
141 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
142 |
+
#
|
143 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
144 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
145 |
+
|
146 |
+
fp32_flat_groups = [
|
147 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
148 |
+
0) for i in range(len(state_dicts))
|
149 |
+
]
|
150 |
+
|
151 |
+
return zero_stage, world_size, fp32_flat_groups
|
152 |
+
|
153 |
+
|
154 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
155 |
+
"""
|
156 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
157 |
+
|
158 |
+
Args:
|
159 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
160 |
+
|
161 |
+
"""
|
162 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
163 |
+
|
164 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
165 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
166 |
+
print(
|
167 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
168 |
+
|
169 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
170 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
171 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
172 |
+
|
173 |
+
if zero_stage == 2:
|
174 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
175 |
+
param_shapes,
|
176 |
+
fp32_flat_groups,
|
177 |
+
buffers)
|
178 |
+
elif zero_stage == 3:
|
179 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
180 |
+
param_shapes,
|
181 |
+
fp32_flat_groups,
|
182 |
+
buffers)
|
183 |
+
|
184 |
+
|
185 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
186 |
+
param_shapes,
|
187 |
+
fp32_flat_groups,
|
188 |
+
buffers):
|
189 |
+
|
190 |
+
# Reconstruction protocol:
|
191 |
+
#
|
192 |
+
# XXX: document this
|
193 |
+
|
194 |
+
if debug:
|
195 |
+
for i in range(world_size):
|
196 |
+
for j in range(len(fp32_flat_groups[0])):
|
197 |
+
print(
|
198 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
199 |
+
|
200 |
+
# XXX: memory usage doubles here (zero2)
|
201 |
+
num_param_groups = len(fp32_flat_groups[0])
|
202 |
+
merged_single_partition_of_fp32_groups = []
|
203 |
+
for i in range(num_param_groups):
|
204 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
205 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
206 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
207 |
+
avail_numel = sum([
|
208 |
+
full_single_fp32_vector.numel()
|
209 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
210 |
+
])
|
211 |
+
|
212 |
+
if debug:
|
213 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
214 |
+
wanted_numel = sum(
|
215 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
216 |
+
# not asserting if there is a mismatch due to possible padding
|
217 |
+
print(f"Have {avail_numel} numels to process.")
|
218 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
219 |
+
|
220 |
+
state_dict = OrderedDict()
|
221 |
+
|
222 |
+
# buffers
|
223 |
+
state_dict.update(buffers)
|
224 |
+
if debug:
|
225 |
+
print(f"added {len(buffers)} buffers")
|
226 |
+
|
227 |
+
# params
|
228 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
229 |
+
# out-of-core computing solution
|
230 |
+
total_numel = 0
|
231 |
+
total_params = 0
|
232 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
233 |
+
offset = 0
|
234 |
+
avail_numel = full_single_fp32_vector.numel()
|
235 |
+
for name, shape in shapes.items():
|
236 |
+
|
237 |
+
unpartitioned_numel = shape.numel()
|
238 |
+
total_numel += unpartitioned_numel
|
239 |
+
total_params += 1
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(
|
243 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
244 |
+
)
|
245 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
246 |
+
0,
|
247 |
+
offset,
|
248 |
+
unpartitioned_numel).view(shape)
|
249 |
+
offset += unpartitioned_numel
|
250 |
+
|
251 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
252 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
253 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
254 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
255 |
+
align_to = 2 * world_size
|
256 |
+
|
257 |
+
def zero2_align(x):
|
258 |
+
return align_to * math.ceil(x / align_to)
|
259 |
+
|
260 |
+
if debug:
|
261 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
262 |
+
|
263 |
+
offset = zero2_align(offset)
|
264 |
+
avail_numel = zero2_align(avail_numel)
|
265 |
+
|
266 |
+
if debug:
|
267 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
268 |
+
|
269 |
+
# Sanity check
|
270 |
+
if offset != avail_numel:
|
271 |
+
raise ValueError(
|
272 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
273 |
+
|
274 |
+
print(
|
275 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
276 |
+
)
|
277 |
+
|
278 |
+
return state_dict
|
279 |
+
|
280 |
+
|
281 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
282 |
+
remainder = unpartitioned_numel % world_size
|
283 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
284 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
285 |
+
return partitioned_numel, padding_numel
|
286 |
+
|
287 |
+
|
288 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
289 |
+
param_shapes,
|
290 |
+
fp32_flat_groups,
|
291 |
+
buffers):
|
292 |
+
|
293 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
294 |
+
# param, re-consolidating each param, while dealing with padding if any
|
295 |
+
|
296 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
297 |
+
# merge list of dicts, preserving order
|
298 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
299 |
+
|
300 |
+
if debug:
|
301 |
+
for i in range(world_size):
|
302 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
303 |
+
|
304 |
+
wanted_params = len(param_shapes)
|
305 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
306 |
+
# not asserting if there is a mismatch due to possible padding
|
307 |
+
print(f"Have {avail_numel} numels to process.")
|
308 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
309 |
+
|
310 |
+
state_dict = OrderedDict()
|
311 |
+
|
312 |
+
# buffers
|
313 |
+
state_dict.update(buffers)
|
314 |
+
if debug:
|
315 |
+
print(f"added {len(buffers)} buffers")
|
316 |
+
|
317 |
+
# params
|
318 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
319 |
+
# out-of-core computing solution
|
320 |
+
offset = 0
|
321 |
+
total_numel = 0
|
322 |
+
total_params = 0
|
323 |
+
for name, shape in param_shapes.items():
|
324 |
+
|
325 |
+
unpartitioned_numel = shape.numel()
|
326 |
+
total_numel += unpartitioned_numel
|
327 |
+
total_params += 1
|
328 |
+
|
329 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
330 |
+
|
331 |
+
if debug:
|
332 |
+
print(
|
333 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
334 |
+
)
|
335 |
+
|
336 |
+
# XXX: memory usage doubles here
|
337 |
+
state_dict[name] = torch.cat(
|
338 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
339 |
+
offset,
|
340 |
+
partitioned_numel)
|
341 |
+
for i in range(world_size)),
|
342 |
+
0).narrow(0,
|
343 |
+
0,
|
344 |
+
unpartitioned_numel).view(shape)
|
345 |
+
offset += partitioned_numel
|
346 |
+
|
347 |
+
offset *= world_size
|
348 |
+
|
349 |
+
# Sanity check
|
350 |
+
if offset != avail_numel:
|
351 |
+
raise ValueError(
|
352 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
353 |
+
|
354 |
+
print(
|
355 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
356 |
+
)
|
357 |
+
|
358 |
+
return state_dict
|
359 |
+
|
360 |
+
|
361 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
362 |
+
"""
|
363 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
364 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
365 |
+
via a model hub.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
369 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
370 |
+
|
371 |
+
Returns:
|
372 |
+
- pytorch ``state_dict``
|
373 |
+
|
374 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
375 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
376 |
+
the checkpoint.
|
377 |
+
|
378 |
+
A typical usage might be ::
|
379 |
+
|
380 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
381 |
+
# do the training and checkpoint saving
|
382 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
383 |
+
model = model.cpu() # move to cpu
|
384 |
+
model.load_state_dict(state_dict)
|
385 |
+
# submit to model hub or save the model to share with others
|
386 |
+
|
387 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
388 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
389 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
390 |
+
|
391 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
392 |
+
|
393 |
+
"""
|
394 |
+
if tag is None:
|
395 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
396 |
+
if os.path.isfile(latest_path):
|
397 |
+
with open(latest_path, 'r') as fd:
|
398 |
+
tag = fd.read().strip()
|
399 |
+
else:
|
400 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
401 |
+
|
402 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
403 |
+
|
404 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
405 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
406 |
+
|
407 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
408 |
+
|
409 |
+
|
410 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
411 |
+
"""
|
412 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
413 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
414 |
+
|
415 |
+
Args:
|
416 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
417 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
418 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
419 |
+
"""
|
420 |
+
|
421 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
422 |
+
print(f"Saving fp32 state dict to {output_file}")
|
423 |
+
torch.save(state_dict, output_file)
|
424 |
+
|
425 |
+
|
426 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
427 |
+
"""
|
428 |
+
1. Put the provided model to cpu
|
429 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
430 |
+
3. Load it into the provided model
|
431 |
+
|
432 |
+
Args:
|
433 |
+
- ``model``: the model object to update
|
434 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
435 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
- ``model`: modified model
|
439 |
+
|
440 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
441 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
442 |
+
conveniently placed for you in the checkpoint folder.
|
443 |
+
|
444 |
+
A typical usage might be ::
|
445 |
+
|
446 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
447 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
448 |
+
# submit to model hub or save the model to share with others
|
449 |
+
|
450 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
451 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
452 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
453 |
+
|
454 |
+
"""
|
455 |
+
logger.info(f"Extracting fp32 weights")
|
456 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
457 |
+
|
458 |
+
logger.info(f"Overwriting model with fp32 weights")
|
459 |
+
model = model.cpu()
|
460 |
+
model.load_state_dict(state_dict, strict=False)
|
461 |
+
|
462 |
+
return model
|
463 |
+
|
464 |
+
|
465 |
+
if __name__ == "__main__":
|
466 |
+
|
467 |
+
parser = argparse.ArgumentParser()
|
468 |
+
parser.add_argument(
|
469 |
+
"checkpoint_dir",
|
470 |
+
type=str,
|
471 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
472 |
+
parser.add_argument(
|
473 |
+
"output_file",
|
474 |
+
type=str,
|
475 |
+
help=
|
476 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
477 |
+
)
|
478 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
479 |
+
args = parser.parse_args()
|
480 |
+
|
481 |
+
debug = args.debug
|
482 |
+
|
483 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
flyte_training_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"base_model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps":
|
|
|
1 |
+
{"base_model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps": 2001, "learning_rate": 2e-05, "weight_decay": 0.02, "warmup_ratio": 0.03, "lr_scheduler_type": "cosine", "batch_size": 16, "micro_batch_size": 1, "val_set_size": 0, "group_by_length": false, "instruction_key": "instruction", "input_key": "input", "output_key": "output", "device_map": "auto", "cache_dir": null, "optim": "adamw_torch", "model_max_length": 512, "debug_mode": false, "debug_train_data_size": 1024, "wandb_project": ""}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5686106713
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ffb1344823c7e872b10d296a16b98a5712cc86b52b776238f0b801f54d28833
|
3 |
size 5686106713
|
trainer_state.json
CHANGED
@@ -1,88 +1,88 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
-
"global_step":
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 6.67,
|
12 |
-
"learning_rate":
|
13 |
-
"loss": 2.
|
14 |
"step": 10
|
15 |
},
|
16 |
{
|
17 |
"epoch": 13.33,
|
18 |
-
"learning_rate": 1.
|
19 |
-
"loss": 1.
|
20 |
"step": 20
|
21 |
},
|
22 |
{
|
23 |
"epoch": 20.0,
|
24 |
-
"learning_rate": 1.
|
25 |
-
"loss": 0.
|
26 |
"step": 30
|
27 |
},
|
28 |
{
|
29 |
"epoch": 26.67,
|
30 |
-
"learning_rate": 1.
|
31 |
-
"loss": 0.
|
32 |
"step": 40
|
33 |
},
|
34 |
{
|
35 |
"epoch": 33.33,
|
36 |
-
"learning_rate":
|
37 |
-
"loss": 0.
|
38 |
"step": 50
|
39 |
},
|
40 |
{
|
41 |
"epoch": 40.0,
|
42 |
-
"learning_rate":
|
43 |
-
"loss": 0.
|
44 |
"step": 60
|
45 |
},
|
46 |
{
|
47 |
"epoch": 46.67,
|
48 |
"learning_rate": 2e-05,
|
49 |
-
"loss": 0.
|
50 |
"step": 70
|
51 |
},
|
52 |
{
|
53 |
"epoch": 53.33,
|
54 |
"learning_rate": 2e-05,
|
55 |
-
"loss": 0.
|
56 |
"step": 80
|
57 |
},
|
58 |
{
|
59 |
"epoch": 60.0,
|
60 |
"learning_rate": 2e-05,
|
61 |
-
"loss": 0.
|
62 |
"step": 90
|
63 |
},
|
64 |
{
|
65 |
"epoch": 66.67,
|
66 |
"learning_rate": 2e-05,
|
67 |
-
"loss": 0.
|
68 |
"step": 100
|
69 |
},
|
70 |
{
|
71 |
"epoch": 73.33,
|
72 |
"learning_rate": 2e-05,
|
73 |
-
"loss": 0.
|
74 |
"step": 110
|
75 |
},
|
76 |
{
|
77 |
"epoch": 80.0,
|
78 |
"learning_rate": 2e-05,
|
79 |
-
"loss": 0.
|
80 |
"step": 120
|
81 |
},
|
82 |
{
|
83 |
"epoch": 86.67,
|
84 |
"learning_rate": 2e-05,
|
85 |
-
"loss": 0.
|
86 |
"step": 130
|
87 |
},
|
88 |
{
|
@@ -94,73 +94,73 @@
|
|
94 |
{
|
95 |
"epoch": 100.0,
|
96 |
"learning_rate": 2e-05,
|
97 |
-
"loss": 0.
|
98 |
"step": 150
|
99 |
},
|
100 |
{
|
101 |
"epoch": 106.67,
|
102 |
"learning_rate": 2e-05,
|
103 |
-
"loss": 0.
|
104 |
"step": 160
|
105 |
},
|
106 |
{
|
107 |
"epoch": 113.33,
|
108 |
"learning_rate": 2e-05,
|
109 |
-
"loss": 0.
|
110 |
"step": 170
|
111 |
},
|
112 |
{
|
113 |
"epoch": 120.0,
|
114 |
"learning_rate": 2e-05,
|
115 |
-
"loss": 0.
|
116 |
"step": 180
|
117 |
},
|
118 |
{
|
119 |
"epoch": 126.67,
|
120 |
"learning_rate": 2e-05,
|
121 |
-
"loss": 0.
|
122 |
"step": 190
|
123 |
},
|
124 |
{
|
125 |
"epoch": 133.33,
|
126 |
"learning_rate": 2e-05,
|
127 |
-
"loss": 0.
|
128 |
"step": 200
|
129 |
},
|
130 |
{
|
131 |
"epoch": 140.0,
|
132 |
"learning_rate": 2e-05,
|
133 |
-
"loss": 0.
|
134 |
"step": 210
|
135 |
},
|
136 |
{
|
137 |
"epoch": 146.67,
|
138 |
"learning_rate": 2e-05,
|
139 |
-
"loss": 0.
|
140 |
"step": 220
|
141 |
},
|
142 |
{
|
143 |
"epoch": 153.33,
|
144 |
"learning_rate": 2e-05,
|
145 |
-
"loss": 0.
|
146 |
"step": 230
|
147 |
},
|
148 |
{
|
149 |
"epoch": 160.0,
|
150 |
"learning_rate": 2e-05,
|
151 |
-
"loss": 0.
|
152 |
"step": 240
|
153 |
},
|
154 |
{
|
155 |
"epoch": 166.67,
|
156 |
"learning_rate": 2e-05,
|
157 |
-
"loss": 0.
|
158 |
"step": 250
|
159 |
},
|
160 |
{
|
161 |
"epoch": 173.33,
|
162 |
"learning_rate": 2e-05,
|
163 |
-
"loss": 0.
|
164 |
"step": 260
|
165 |
},
|
166 |
{
|
@@ -184,19 +184,19 @@
|
|
184 |
{
|
185 |
"epoch": 200.0,
|
186 |
"learning_rate": 2e-05,
|
187 |
-
"loss": 0.
|
188 |
"step": 300
|
189 |
},
|
190 |
{
|
191 |
"epoch": 206.67,
|
192 |
"learning_rate": 2e-05,
|
193 |
-
"loss": 0.
|
194 |
"step": 310
|
195 |
},
|
196 |
{
|
197 |
"epoch": 213.33,
|
198 |
"learning_rate": 2e-05,
|
199 |
-
"loss": 0.
|
200 |
"step": 320
|
201 |
},
|
202 |
{
|
@@ -208,43 +208,43 @@
|
|
208 |
{
|
209 |
"epoch": 226.67,
|
210 |
"learning_rate": 2e-05,
|
211 |
-
"loss": 0.
|
212 |
"step": 340
|
213 |
},
|
214 |
{
|
215 |
"epoch": 233.33,
|
216 |
"learning_rate": 2e-05,
|
217 |
-
"loss": 0.
|
218 |
"step": 350
|
219 |
},
|
220 |
{
|
221 |
"epoch": 240.0,
|
222 |
"learning_rate": 2e-05,
|
223 |
-
"loss": 0.
|
224 |
"step": 360
|
225 |
},
|
226 |
{
|
227 |
"epoch": 246.67,
|
228 |
"learning_rate": 2e-05,
|
229 |
-
"loss": 0.
|
230 |
"step": 370
|
231 |
},
|
232 |
{
|
233 |
"epoch": 253.33,
|
234 |
"learning_rate": 2e-05,
|
235 |
-
"loss": 0.
|
236 |
"step": 380
|
237 |
},
|
238 |
{
|
239 |
"epoch": 260.0,
|
240 |
"learning_rate": 2e-05,
|
241 |
-
"loss": 0.
|
242 |
"step": 390
|
243 |
},
|
244 |
{
|
245 |
"epoch": 266.67,
|
246 |
"learning_rate": 2e-05,
|
247 |
-
"loss": 0.
|
248 |
"step": 400
|
249 |
},
|
250 |
{
|
@@ -262,25 +262,25 @@
|
|
262 |
{
|
263 |
"epoch": 286.67,
|
264 |
"learning_rate": 2e-05,
|
265 |
-
"loss": 0.
|
266 |
"step": 430
|
267 |
},
|
268 |
{
|
269 |
"epoch": 293.33,
|
270 |
"learning_rate": 2e-05,
|
271 |
-
"loss": 0.
|
272 |
"step": 440
|
273 |
},
|
274 |
{
|
275 |
"epoch": 300.0,
|
276 |
"learning_rate": 2e-05,
|
277 |
-
"loss": 0.
|
278 |
"step": 450
|
279 |
},
|
280 |
{
|
281 |
"epoch": 306.67,
|
282 |
"learning_rate": 2e-05,
|
283 |
-
"loss": 0.
|
284 |
"step": 460
|
285 |
},
|
286 |
{
|
@@ -292,19 +292,19 @@
|
|
292 |
{
|
293 |
"epoch": 320.0,
|
294 |
"learning_rate": 2e-05,
|
295 |
-
"loss": 0.
|
296 |
"step": 480
|
297 |
},
|
298 |
{
|
299 |
"epoch": 326.67,
|
300 |
"learning_rate": 2e-05,
|
301 |
-
"loss": 0.
|
302 |
"step": 490
|
303 |
},
|
304 |
{
|
305 |
"epoch": 333.33,
|
306 |
"learning_rate": 2e-05,
|
307 |
-
"loss": 0.
|
308 |
"step": 500
|
309 |
},
|
310 |
{
|
@@ -316,205 +316,205 @@
|
|
316 |
{
|
317 |
"epoch": 346.67,
|
318 |
"learning_rate": 2e-05,
|
319 |
-
"loss": 0.
|
320 |
"step": 520
|
321 |
},
|
322 |
{
|
323 |
"epoch": 353.33,
|
324 |
"learning_rate": 2e-05,
|
325 |
-
"loss": 0.
|
326 |
"step": 530
|
327 |
},
|
328 |
{
|
329 |
"epoch": 360.0,
|
330 |
"learning_rate": 2e-05,
|
331 |
-
"loss": 0.
|
332 |
"step": 540
|
333 |
},
|
334 |
{
|
335 |
"epoch": 366.67,
|
336 |
"learning_rate": 2e-05,
|
337 |
-
"loss": 0.
|
338 |
"step": 550
|
339 |
},
|
340 |
{
|
341 |
"epoch": 373.33,
|
342 |
"learning_rate": 2e-05,
|
343 |
-
"loss": 0.
|
344 |
"step": 560
|
345 |
},
|
346 |
{
|
347 |
"epoch": 380.0,
|
348 |
"learning_rate": 2e-05,
|
349 |
-
"loss": 0.
|
350 |
"step": 570
|
351 |
},
|
352 |
{
|
353 |
"epoch": 386.67,
|
354 |
"learning_rate": 2e-05,
|
355 |
-
"loss": 0.
|
356 |
"step": 580
|
357 |
},
|
358 |
{
|
359 |
"epoch": 393.33,
|
360 |
"learning_rate": 2e-05,
|
361 |
-
"loss": 0.
|
362 |
"step": 590
|
363 |
},
|
364 |
{
|
365 |
"epoch": 400.0,
|
366 |
"learning_rate": 2e-05,
|
367 |
-
"loss": 0.
|
368 |
"step": 600
|
369 |
},
|
370 |
{
|
371 |
"epoch": 406.67,
|
372 |
"learning_rate": 2e-05,
|
373 |
-
"loss": 0.
|
374 |
"step": 610
|
375 |
},
|
376 |
{
|
377 |
"epoch": 413.33,
|
378 |
"learning_rate": 2e-05,
|
379 |
-
"loss": 0.
|
380 |
"step": 620
|
381 |
},
|
382 |
{
|
383 |
"epoch": 420.0,
|
384 |
"learning_rate": 2e-05,
|
385 |
-
"loss": 0.
|
386 |
"step": 630
|
387 |
},
|
388 |
{
|
389 |
"epoch": 426.67,
|
390 |
"learning_rate": 2e-05,
|
391 |
-
"loss": 0.
|
392 |
"step": 640
|
393 |
},
|
394 |
{
|
395 |
"epoch": 433.33,
|
396 |
"learning_rate": 2e-05,
|
397 |
-
"loss": 0.
|
398 |
"step": 650
|
399 |
},
|
400 |
{
|
401 |
"epoch": 440.0,
|
402 |
"learning_rate": 2e-05,
|
403 |
-
"loss": 0.
|
404 |
"step": 660
|
405 |
},
|
406 |
{
|
407 |
"epoch": 446.67,
|
408 |
"learning_rate": 2e-05,
|
409 |
-
"loss": 0.
|
410 |
"step": 670
|
411 |
},
|
412 |
{
|
413 |
"epoch": 453.33,
|
414 |
"learning_rate": 2e-05,
|
415 |
-
"loss": 0.
|
416 |
"step": 680
|
417 |
},
|
418 |
{
|
419 |
"epoch": 460.0,
|
420 |
"learning_rate": 2e-05,
|
421 |
-
"loss": 0.
|
422 |
"step": 690
|
423 |
},
|
424 |
{
|
425 |
"epoch": 466.67,
|
426 |
"learning_rate": 2e-05,
|
427 |
-
"loss": 0.
|
428 |
"step": 700
|
429 |
},
|
430 |
{
|
431 |
"epoch": 473.33,
|
432 |
"learning_rate": 2e-05,
|
433 |
-
"loss": 0.
|
434 |
"step": 710
|
435 |
},
|
436 |
{
|
437 |
"epoch": 480.0,
|
438 |
"learning_rate": 2e-05,
|
439 |
-
"loss": 0.
|
440 |
"step": 720
|
441 |
},
|
442 |
{
|
443 |
"epoch": 486.67,
|
444 |
"learning_rate": 2e-05,
|
445 |
-
"loss": 0.
|
446 |
"step": 730
|
447 |
},
|
448 |
{
|
449 |
"epoch": 493.33,
|
450 |
"learning_rate": 2e-05,
|
451 |
-
"loss": 0.
|
452 |
"step": 740
|
453 |
},
|
454 |
{
|
455 |
"epoch": 500.0,
|
456 |
"learning_rate": 2e-05,
|
457 |
-
"loss": 0.
|
458 |
"step": 750
|
459 |
},
|
460 |
{
|
461 |
"epoch": 506.67,
|
462 |
"learning_rate": 2e-05,
|
463 |
-
"loss": 0.
|
464 |
"step": 760
|
465 |
},
|
466 |
{
|
467 |
"epoch": 513.33,
|
468 |
"learning_rate": 2e-05,
|
469 |
-
"loss": 0.
|
470 |
"step": 770
|
471 |
},
|
472 |
{
|
473 |
"epoch": 520.0,
|
474 |
"learning_rate": 2e-05,
|
475 |
-
"loss": 0.
|
476 |
"step": 780
|
477 |
},
|
478 |
{
|
479 |
"epoch": 526.67,
|
480 |
"learning_rate": 2e-05,
|
481 |
-
"loss": 0.
|
482 |
"step": 790
|
483 |
},
|
484 |
{
|
485 |
"epoch": 533.33,
|
486 |
"learning_rate": 2e-05,
|
487 |
-
"loss": 0.
|
488 |
"step": 800
|
489 |
},
|
490 |
{
|
491 |
"epoch": 540.0,
|
492 |
"learning_rate": 2e-05,
|
493 |
-
"loss": 0.
|
494 |
"step": 810
|
495 |
},
|
496 |
{
|
497 |
"epoch": 546.67,
|
498 |
"learning_rate": 2e-05,
|
499 |
-
"loss": 0.
|
500 |
"step": 820
|
501 |
},
|
502 |
{
|
503 |
"epoch": 553.33,
|
504 |
"learning_rate": 2e-05,
|
505 |
-
"loss": 0.
|
506 |
"step": 830
|
507 |
},
|
508 |
{
|
509 |
"epoch": 560.0,
|
510 |
"learning_rate": 2e-05,
|
511 |
-
"loss": 0.
|
512 |
"step": 840
|
513 |
},
|
514 |
{
|
515 |
"epoch": 566.67,
|
516 |
"learning_rate": 2e-05,
|
517 |
-
"loss": 0.
|
518 |
"step": 850
|
519 |
},
|
520 |
{
|
@@ -532,91 +532,91 @@
|
|
532 |
{
|
533 |
"epoch": 586.67,
|
534 |
"learning_rate": 2e-05,
|
535 |
-
"loss": 0.
|
536 |
"step": 880
|
537 |
},
|
538 |
{
|
539 |
"epoch": 593.33,
|
540 |
"learning_rate": 2e-05,
|
541 |
-
"loss": 0.
|
542 |
"step": 890
|
543 |
},
|
544 |
{
|
545 |
"epoch": 600.0,
|
546 |
"learning_rate": 2e-05,
|
547 |
-
"loss": 0.
|
548 |
"step": 900
|
549 |
},
|
550 |
{
|
551 |
"epoch": 606.67,
|
552 |
"learning_rate": 2e-05,
|
553 |
-
"loss": 0.
|
554 |
"step": 910
|
555 |
},
|
556 |
{
|
557 |
"epoch": 613.33,
|
558 |
"learning_rate": 2e-05,
|
559 |
-
"loss": 0.
|
560 |
"step": 920
|
561 |
},
|
562 |
{
|
563 |
"epoch": 620.0,
|
564 |
"learning_rate": 2e-05,
|
565 |
-
"loss": 0.
|
566 |
"step": 930
|
567 |
},
|
568 |
{
|
569 |
"epoch": 626.67,
|
570 |
"learning_rate": 2e-05,
|
571 |
-
"loss": 0.
|
572 |
"step": 940
|
573 |
},
|
574 |
{
|
575 |
"epoch": 633.33,
|
576 |
"learning_rate": 2e-05,
|
577 |
-
"loss": 0.
|
578 |
"step": 950
|
579 |
},
|
580 |
{
|
581 |
"epoch": 640.0,
|
582 |
"learning_rate": 2e-05,
|
583 |
-
"loss": 0.
|
584 |
"step": 960
|
585 |
},
|
586 |
{
|
587 |
"epoch": 646.67,
|
588 |
"learning_rate": 2e-05,
|
589 |
-
"loss": 0.
|
590 |
"step": 970
|
591 |
},
|
592 |
{
|
593 |
"epoch": 653.33,
|
594 |
"learning_rate": 2e-05,
|
595 |
-
"loss": 0.
|
596 |
"step": 980
|
597 |
},
|
598 |
{
|
599 |
"epoch": 660.0,
|
600 |
"learning_rate": 2e-05,
|
601 |
-
"loss": 0.
|
602 |
"step": 990
|
603 |
},
|
604 |
{
|
605 |
"epoch": 666.67,
|
606 |
"learning_rate": 2e-05,
|
607 |
-
"loss": 0.
|
608 |
"step": 1000
|
609 |
},
|
610 |
{
|
611 |
"epoch": 673.33,
|
612 |
"learning_rate": 2e-05,
|
613 |
-
"loss": 0.
|
614 |
"step": 1010
|
615 |
},
|
616 |
{
|
617 |
"epoch": 680.0,
|
618 |
"learning_rate": 2e-05,
|
619 |
-
"loss": 0.
|
620 |
"step": 1020
|
621 |
},
|
622 |
{
|
@@ -628,7 +628,7 @@
|
|
628 |
{
|
629 |
"epoch": 693.33,
|
630 |
"learning_rate": 2e-05,
|
631 |
-
"loss": 0.
|
632 |
"step": 1040
|
633 |
},
|
634 |
{
|
@@ -646,280 +646,580 @@
|
|
646 |
{
|
647 |
"epoch": 713.33,
|
648 |
"learning_rate": 2e-05,
|
649 |
-
"loss": 0.
|
650 |
"step": 1070
|
651 |
},
|
652 |
{
|
653 |
"epoch": 720.0,
|
654 |
"learning_rate": 2e-05,
|
655 |
-
"loss": 0.
|
656 |
"step": 1080
|
657 |
},
|
658 |
{
|
659 |
"epoch": 726.67,
|
660 |
"learning_rate": 2e-05,
|
661 |
-
"loss": 0.
|
662 |
"step": 1090
|
663 |
},
|
664 |
{
|
665 |
"epoch": 733.33,
|
666 |
"learning_rate": 2e-05,
|
667 |
-
"loss": 0.
|
668 |
"step": 1100
|
669 |
},
|
670 |
{
|
671 |
"epoch": 740.0,
|
672 |
"learning_rate": 2e-05,
|
673 |
-
"loss": 0.
|
674 |
"step": 1110
|
675 |
},
|
676 |
{
|
677 |
"epoch": 746.67,
|
678 |
"learning_rate": 2e-05,
|
679 |
-
"loss": 0.
|
680 |
"step": 1120
|
681 |
},
|
682 |
{
|
683 |
"epoch": 753.33,
|
684 |
"learning_rate": 2e-05,
|
685 |
-
"loss": 0.
|
686 |
"step": 1130
|
687 |
},
|
688 |
{
|
689 |
"epoch": 760.0,
|
690 |
"learning_rate": 2e-05,
|
691 |
-
"loss": 0.
|
692 |
"step": 1140
|
693 |
},
|
694 |
{
|
695 |
"epoch": 766.67,
|
696 |
"learning_rate": 2e-05,
|
697 |
-
"loss": 0.
|
698 |
"step": 1150
|
699 |
},
|
700 |
{
|
701 |
"epoch": 773.33,
|
702 |
"learning_rate": 2e-05,
|
703 |
-
"loss": 0.
|
704 |
"step": 1160
|
705 |
},
|
706 |
{
|
707 |
"epoch": 780.0,
|
708 |
"learning_rate": 2e-05,
|
709 |
-
"loss": 0.
|
710 |
"step": 1170
|
711 |
},
|
712 |
{
|
713 |
"epoch": 786.67,
|
714 |
"learning_rate": 2e-05,
|
715 |
-
"loss": 0.
|
716 |
"step": 1180
|
717 |
},
|
718 |
{
|
719 |
"epoch": 793.33,
|
720 |
"learning_rate": 2e-05,
|
721 |
-
"loss": 0.
|
722 |
"step": 1190
|
723 |
},
|
724 |
{
|
725 |
"epoch": 800.0,
|
726 |
"learning_rate": 2e-05,
|
727 |
-
"loss": 0.
|
728 |
"step": 1200
|
729 |
},
|
730 |
{
|
731 |
"epoch": 806.67,
|
732 |
"learning_rate": 2e-05,
|
733 |
-
"loss": 0.
|
734 |
"step": 1210
|
735 |
},
|
736 |
{
|
737 |
"epoch": 813.33,
|
738 |
"learning_rate": 2e-05,
|
739 |
-
"loss": 0.
|
740 |
"step": 1220
|
741 |
},
|
742 |
{
|
743 |
"epoch": 820.0,
|
744 |
"learning_rate": 2e-05,
|
745 |
-
"loss": 0.
|
746 |
"step": 1230
|
747 |
},
|
748 |
{
|
749 |
"epoch": 826.67,
|
750 |
"learning_rate": 2e-05,
|
751 |
-
"loss": 0.
|
752 |
"step": 1240
|
753 |
},
|
754 |
{
|
755 |
"epoch": 833.33,
|
756 |
"learning_rate": 2e-05,
|
757 |
-
"loss": 0.
|
758 |
"step": 1250
|
759 |
},
|
760 |
{
|
761 |
"epoch": 840.0,
|
762 |
"learning_rate": 2e-05,
|
763 |
-
"loss": 0.
|
764 |
"step": 1260
|
765 |
},
|
766 |
{
|
767 |
"epoch": 846.67,
|
768 |
"learning_rate": 2e-05,
|
769 |
-
"loss": 0.
|
770 |
"step": 1270
|
771 |
},
|
772 |
{
|
773 |
"epoch": 853.33,
|
774 |
"learning_rate": 2e-05,
|
775 |
-
"loss": 0.
|
776 |
"step": 1280
|
777 |
},
|
778 |
{
|
779 |
"epoch": 860.0,
|
780 |
"learning_rate": 2e-05,
|
781 |
-
"loss": 0.
|
782 |
"step": 1290
|
783 |
},
|
784 |
{
|
785 |
"epoch": 866.67,
|
786 |
"learning_rate": 2e-05,
|
787 |
-
"loss": 0.
|
788 |
"step": 1300
|
789 |
},
|
790 |
{
|
791 |
"epoch": 873.33,
|
792 |
"learning_rate": 2e-05,
|
793 |
-
"loss": 0.
|
794 |
"step": 1310
|
795 |
},
|
796 |
{
|
797 |
"epoch": 880.0,
|
798 |
"learning_rate": 2e-05,
|
799 |
-
"loss": 0.
|
800 |
"step": 1320
|
801 |
},
|
802 |
{
|
803 |
"epoch": 886.67,
|
804 |
"learning_rate": 2e-05,
|
805 |
-
"loss": 0.
|
806 |
"step": 1330
|
807 |
},
|
808 |
{
|
809 |
"epoch": 893.33,
|
810 |
"learning_rate": 2e-05,
|
811 |
-
"loss": 0.
|
812 |
"step": 1340
|
813 |
},
|
814 |
{
|
815 |
"epoch": 900.0,
|
816 |
"learning_rate": 2e-05,
|
817 |
-
"loss": 0.
|
818 |
"step": 1350
|
819 |
},
|
820 |
{
|
821 |
"epoch": 906.67,
|
822 |
"learning_rate": 2e-05,
|
823 |
-
"loss": 0.
|
824 |
"step": 1360
|
825 |
},
|
826 |
{
|
827 |
"epoch": 913.33,
|
828 |
"learning_rate": 2e-05,
|
829 |
-
"loss": 0.
|
830 |
"step": 1370
|
831 |
},
|
832 |
{
|
833 |
"epoch": 920.0,
|
834 |
"learning_rate": 2e-05,
|
835 |
-
"loss": 0.
|
836 |
"step": 1380
|
837 |
},
|
838 |
{
|
839 |
"epoch": 926.67,
|
840 |
"learning_rate": 2e-05,
|
841 |
-
"loss": 0.
|
842 |
"step": 1390
|
843 |
},
|
844 |
{
|
845 |
"epoch": 933.33,
|
846 |
"learning_rate": 2e-05,
|
847 |
-
"loss": 0.
|
848 |
"step": 1400
|
849 |
},
|
850 |
{
|
851 |
"epoch": 940.0,
|
852 |
"learning_rate": 2e-05,
|
853 |
-
"loss": 0.
|
854 |
"step": 1410
|
855 |
},
|
856 |
{
|
857 |
"epoch": 946.67,
|
858 |
"learning_rate": 2e-05,
|
859 |
-
"loss": 0.
|
860 |
"step": 1420
|
861 |
},
|
862 |
{
|
863 |
"epoch": 953.33,
|
864 |
"learning_rate": 2e-05,
|
865 |
-
"loss": 0.
|
866 |
"step": 1430
|
867 |
},
|
868 |
{
|
869 |
"epoch": 960.0,
|
870 |
"learning_rate": 2e-05,
|
871 |
-
"loss": 0.
|
872 |
"step": 1440
|
873 |
},
|
874 |
{
|
875 |
"epoch": 966.67,
|
876 |
"learning_rate": 2e-05,
|
877 |
-
"loss": 0.
|
878 |
"step": 1450
|
879 |
},
|
880 |
{
|
881 |
"epoch": 973.33,
|
882 |
"learning_rate": 2e-05,
|
883 |
-
"loss": 0.
|
884 |
"step": 1460
|
885 |
},
|
886 |
{
|
887 |
"epoch": 980.0,
|
888 |
"learning_rate": 2e-05,
|
889 |
-
"loss": 0.
|
890 |
"step": 1470
|
891 |
},
|
892 |
{
|
893 |
"epoch": 986.67,
|
894 |
"learning_rate": 2e-05,
|
895 |
-
"loss": 0.
|
896 |
"step": 1480
|
897 |
},
|
898 |
{
|
899 |
"epoch": 993.33,
|
900 |
"learning_rate": 2e-05,
|
901 |
-
"loss": 0.
|
902 |
"step": 1490
|
903 |
},
|
904 |
{
|
905 |
"epoch": 1000.0,
|
906 |
"learning_rate": 2e-05,
|
907 |
-
"loss": 0.
|
908 |
"step": 1500
|
909 |
},
|
910 |
{
|
911 |
-
"epoch":
|
912 |
-
"
|
913 |
-
"
|
914 |
-
"
|
915 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
916 |
"train_samples_per_second": 3.0,
|
917 |
"train_steps_per_second": 0.023
|
918 |
}
|
919 |
],
|
920 |
-
"max_steps":
|
921 |
-
"num_train_epochs":
|
922 |
-
"total_flos":
|
923 |
"trial_name": null,
|
924 |
"trial_params": null
|
925 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1334.0,
|
5 |
+
"global_step": 2001,
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 6.67,
|
12 |
+
"learning_rate": 9.46713625058711e-06,
|
13 |
+
"loss": 2.0455,
|
14 |
"step": 10
|
15 |
},
|
16 |
{
|
17 |
"epoch": 13.33,
|
18 |
+
"learning_rate": 1.3783995508828243e-05,
|
19 |
+
"loss": 1.425,
|
20 |
"step": 20
|
21 |
},
|
22 |
{
|
23 |
"epoch": 20.0,
|
24 |
+
"learning_rate": 1.603472631319529e-05,
|
25 |
+
"loss": 0.5237,
|
26 |
"step": 30
|
27 |
},
|
28 |
{
|
29 |
"epoch": 26.67,
|
30 |
+
"learning_rate": 1.7567641489142956e-05,
|
31 |
+
"loss": 0.1184,
|
32 |
"step": 40
|
33 |
},
|
34 |
{
|
35 |
"epoch": 33.33,
|
36 |
+
"learning_rate": 1.8731528764550483e-05,
|
37 |
+
"loss": 0.0585,
|
38 |
"step": 50
|
39 |
},
|
40 |
{
|
41 |
"epoch": 40.0,
|
42 |
+
"learning_rate": 1.9670033192067303e-05,
|
43 |
+
"loss": 0.0411,
|
44 |
"step": 60
|
45 |
},
|
46 |
{
|
47 |
"epoch": 46.67,
|
48 |
"learning_rate": 2e-05,
|
49 |
+
"loss": 0.0321,
|
50 |
"step": 70
|
51 |
},
|
52 |
{
|
53 |
"epoch": 53.33,
|
54 |
"learning_rate": 2e-05,
|
55 |
+
"loss": 0.0232,
|
56 |
"step": 80
|
57 |
},
|
58 |
{
|
59 |
"epoch": 60.0,
|
60 |
"learning_rate": 2e-05,
|
61 |
+
"loss": 0.0182,
|
62 |
"step": 90
|
63 |
},
|
64 |
{
|
65 |
"epoch": 66.67,
|
66 |
"learning_rate": 2e-05,
|
67 |
+
"loss": 0.0137,
|
68 |
"step": 100
|
69 |
},
|
70 |
{
|
71 |
"epoch": 73.33,
|
72 |
"learning_rate": 2e-05,
|
73 |
+
"loss": 0.0111,
|
74 |
"step": 110
|
75 |
},
|
76 |
{
|
77 |
"epoch": 80.0,
|
78 |
"learning_rate": 2e-05,
|
79 |
+
"loss": 0.0096,
|
80 |
"step": 120
|
81 |
},
|
82 |
{
|
83 |
"epoch": 86.67,
|
84 |
"learning_rate": 2e-05,
|
85 |
+
"loss": 0.0085,
|
86 |
"step": 130
|
87 |
},
|
88 |
{
|
|
|
94 |
{
|
95 |
"epoch": 100.0,
|
96 |
"learning_rate": 2e-05,
|
97 |
+
"loss": 0.007,
|
98 |
"step": 150
|
99 |
},
|
100 |
{
|
101 |
"epoch": 106.67,
|
102 |
"learning_rate": 2e-05,
|
103 |
+
"loss": 0.0066,
|
104 |
"step": 160
|
105 |
},
|
106 |
{
|
107 |
"epoch": 113.33,
|
108 |
"learning_rate": 2e-05,
|
109 |
+
"loss": 0.0061,
|
110 |
"step": 170
|
111 |
},
|
112 |
{
|
113 |
"epoch": 120.0,
|
114 |
"learning_rate": 2e-05,
|
115 |
+
"loss": 0.0057,
|
116 |
"step": 180
|
117 |
},
|
118 |
{
|
119 |
"epoch": 126.67,
|
120 |
"learning_rate": 2e-05,
|
121 |
+
"loss": 0.0054,
|
122 |
"step": 190
|
123 |
},
|
124 |
{
|
125 |
"epoch": 133.33,
|
126 |
"learning_rate": 2e-05,
|
127 |
+
"loss": 0.0052,
|
128 |
"step": 200
|
129 |
},
|
130 |
{
|
131 |
"epoch": 140.0,
|
132 |
"learning_rate": 2e-05,
|
133 |
+
"loss": 0.0049,
|
134 |
"step": 210
|
135 |
},
|
136 |
{
|
137 |
"epoch": 146.67,
|
138 |
"learning_rate": 2e-05,
|
139 |
+
"loss": 0.0048,
|
140 |
"step": 220
|
141 |
},
|
142 |
{
|
143 |
"epoch": 153.33,
|
144 |
"learning_rate": 2e-05,
|
145 |
+
"loss": 0.0048,
|
146 |
"step": 230
|
147 |
},
|
148 |
{
|
149 |
"epoch": 160.0,
|
150 |
"learning_rate": 2e-05,
|
151 |
+
"loss": 0.0045,
|
152 |
"step": 240
|
153 |
},
|
154 |
{
|
155 |
"epoch": 166.67,
|
156 |
"learning_rate": 2e-05,
|
157 |
+
"loss": 0.0046,
|
158 |
"step": 250
|
159 |
},
|
160 |
{
|
161 |
"epoch": 173.33,
|
162 |
"learning_rate": 2e-05,
|
163 |
+
"loss": 0.0045,
|
164 |
"step": 260
|
165 |
},
|
166 |
{
|
|
|
184 |
{
|
185 |
"epoch": 200.0,
|
186 |
"learning_rate": 2e-05,
|
187 |
+
"loss": 0.0042,
|
188 |
"step": 300
|
189 |
},
|
190 |
{
|
191 |
"epoch": 206.67,
|
192 |
"learning_rate": 2e-05,
|
193 |
+
"loss": 0.0041,
|
194 |
"step": 310
|
195 |
},
|
196 |
{
|
197 |
"epoch": 213.33,
|
198 |
"learning_rate": 2e-05,
|
199 |
+
"loss": 0.0041,
|
200 |
"step": 320
|
201 |
},
|
202 |
{
|
|
|
208 |
{
|
209 |
"epoch": 226.67,
|
210 |
"learning_rate": 2e-05,
|
211 |
+
"loss": 0.004,
|
212 |
"step": 340
|
213 |
},
|
214 |
{
|
215 |
"epoch": 233.33,
|
216 |
"learning_rate": 2e-05,
|
217 |
+
"loss": 0.004,
|
218 |
"step": 350
|
219 |
},
|
220 |
{
|
221 |
"epoch": 240.0,
|
222 |
"learning_rate": 2e-05,
|
223 |
+
"loss": 0.0038,
|
224 |
"step": 360
|
225 |
},
|
226 |
{
|
227 |
"epoch": 246.67,
|
228 |
"learning_rate": 2e-05,
|
229 |
+
"loss": 0.004,
|
230 |
"step": 370
|
231 |
},
|
232 |
{
|
233 |
"epoch": 253.33,
|
234 |
"learning_rate": 2e-05,
|
235 |
+
"loss": 0.004,
|
236 |
"step": 380
|
237 |
},
|
238 |
{
|
239 |
"epoch": 260.0,
|
240 |
"learning_rate": 2e-05,
|
241 |
+
"loss": 0.0041,
|
242 |
"step": 390
|
243 |
},
|
244 |
{
|
245 |
"epoch": 266.67,
|
246 |
"learning_rate": 2e-05,
|
247 |
+
"loss": 0.0039,
|
248 |
"step": 400
|
249 |
},
|
250 |
{
|
|
|
262 |
{
|
263 |
"epoch": 286.67,
|
264 |
"learning_rate": 2e-05,
|
265 |
+
"loss": 0.0038,
|
266 |
"step": 430
|
267 |
},
|
268 |
{
|
269 |
"epoch": 293.33,
|
270 |
"learning_rate": 2e-05,
|
271 |
+
"loss": 0.004,
|
272 |
"step": 440
|
273 |
},
|
274 |
{
|
275 |
"epoch": 300.0,
|
276 |
"learning_rate": 2e-05,
|
277 |
+
"loss": 0.0039,
|
278 |
"step": 450
|
279 |
},
|
280 |
{
|
281 |
"epoch": 306.67,
|
282 |
"learning_rate": 2e-05,
|
283 |
+
"loss": 0.0038,
|
284 |
"step": 460
|
285 |
},
|
286 |
{
|
|
|
292 |
{
|
293 |
"epoch": 320.0,
|
294 |
"learning_rate": 2e-05,
|
295 |
+
"loss": 0.0038,
|
296 |
"step": 480
|
297 |
},
|
298 |
{
|
299 |
"epoch": 326.67,
|
300 |
"learning_rate": 2e-05,
|
301 |
+
"loss": 0.0038,
|
302 |
"step": 490
|
303 |
},
|
304 |
{
|
305 |
"epoch": 333.33,
|
306 |
"learning_rate": 2e-05,
|
307 |
+
"loss": 0.0037,
|
308 |
"step": 500
|
309 |
},
|
310 |
{
|
|
|
316 |
{
|
317 |
"epoch": 346.67,
|
318 |
"learning_rate": 2e-05,
|
319 |
+
"loss": 0.004,
|
320 |
"step": 520
|
321 |
},
|
322 |
{
|
323 |
"epoch": 353.33,
|
324 |
"learning_rate": 2e-05,
|
325 |
+
"loss": 0.0037,
|
326 |
"step": 530
|
327 |
},
|
328 |
{
|
329 |
"epoch": 360.0,
|
330 |
"learning_rate": 2e-05,
|
331 |
+
"loss": 0.0039,
|
332 |
"step": 540
|
333 |
},
|
334 |
{
|
335 |
"epoch": 366.67,
|
336 |
"learning_rate": 2e-05,
|
337 |
+
"loss": 0.0045,
|
338 |
"step": 550
|
339 |
},
|
340 |
{
|
341 |
"epoch": 373.33,
|
342 |
"learning_rate": 2e-05,
|
343 |
+
"loss": 0.005,
|
344 |
"step": 560
|
345 |
},
|
346 |
{
|
347 |
"epoch": 380.0,
|
348 |
"learning_rate": 2e-05,
|
349 |
+
"loss": 0.014,
|
350 |
"step": 570
|
351 |
},
|
352 |
{
|
353 |
"epoch": 386.67,
|
354 |
"learning_rate": 2e-05,
|
355 |
+
"loss": 0.0149,
|
356 |
"step": 580
|
357 |
},
|
358 |
{
|
359 |
"epoch": 393.33,
|
360 |
"learning_rate": 2e-05,
|
361 |
+
"loss": 0.0084,
|
362 |
"step": 590
|
363 |
},
|
364 |
{
|
365 |
"epoch": 400.0,
|
366 |
"learning_rate": 2e-05,
|
367 |
+
"loss": 0.0072,
|
368 |
"step": 600
|
369 |
},
|
370 |
{
|
371 |
"epoch": 406.67,
|
372 |
"learning_rate": 2e-05,
|
373 |
+
"loss": 0.0058,
|
374 |
"step": 610
|
375 |
},
|
376 |
{
|
377 |
"epoch": 413.33,
|
378 |
"learning_rate": 2e-05,
|
379 |
+
"loss": 0.0053,
|
380 |
"step": 620
|
381 |
},
|
382 |
{
|
383 |
"epoch": 420.0,
|
384 |
"learning_rate": 2e-05,
|
385 |
+
"loss": 0.0051,
|
386 |
"step": 630
|
387 |
},
|
388 |
{
|
389 |
"epoch": 426.67,
|
390 |
"learning_rate": 2e-05,
|
391 |
+
"loss": 0.0047,
|
392 |
"step": 640
|
393 |
},
|
394 |
{
|
395 |
"epoch": 433.33,
|
396 |
"learning_rate": 2e-05,
|
397 |
+
"loss": 0.0045,
|
398 |
"step": 650
|
399 |
},
|
400 |
{
|
401 |
"epoch": 440.0,
|
402 |
"learning_rate": 2e-05,
|
403 |
+
"loss": 0.0043,
|
404 |
"step": 660
|
405 |
},
|
406 |
{
|
407 |
"epoch": 446.67,
|
408 |
"learning_rate": 2e-05,
|
409 |
+
"loss": 0.0041,
|
410 |
"step": 670
|
411 |
},
|
412 |
{
|
413 |
"epoch": 453.33,
|
414 |
"learning_rate": 2e-05,
|
415 |
+
"loss": 0.0039,
|
416 |
"step": 680
|
417 |
},
|
418 |
{
|
419 |
"epoch": 460.0,
|
420 |
"learning_rate": 2e-05,
|
421 |
+
"loss": 0.0038,
|
422 |
"step": 690
|
423 |
},
|
424 |
{
|
425 |
"epoch": 466.67,
|
426 |
"learning_rate": 2e-05,
|
427 |
+
"loss": 0.004,
|
428 |
"step": 700
|
429 |
},
|
430 |
{
|
431 |
"epoch": 473.33,
|
432 |
"learning_rate": 2e-05,
|
433 |
+
"loss": 0.004,
|
434 |
"step": 710
|
435 |
},
|
436 |
{
|
437 |
"epoch": 480.0,
|
438 |
"learning_rate": 2e-05,
|
439 |
+
"loss": 0.0036,
|
440 |
"step": 720
|
441 |
},
|
442 |
{
|
443 |
"epoch": 486.67,
|
444 |
"learning_rate": 2e-05,
|
445 |
+
"loss": 0.0036,
|
446 |
"step": 730
|
447 |
},
|
448 |
{
|
449 |
"epoch": 493.33,
|
450 |
"learning_rate": 2e-05,
|
451 |
+
"loss": 0.0037,
|
452 |
"step": 740
|
453 |
},
|
454 |
{
|
455 |
"epoch": 500.0,
|
456 |
"learning_rate": 2e-05,
|
457 |
+
"loss": 0.0036,
|
458 |
"step": 750
|
459 |
},
|
460 |
{
|
461 |
"epoch": 506.67,
|
462 |
"learning_rate": 2e-05,
|
463 |
+
"loss": 0.0034,
|
464 |
"step": 760
|
465 |
},
|
466 |
{
|
467 |
"epoch": 513.33,
|
468 |
"learning_rate": 2e-05,
|
469 |
+
"loss": 0.0035,
|
470 |
"step": 770
|
471 |
},
|
472 |
{
|
473 |
"epoch": 520.0,
|
474 |
"learning_rate": 2e-05,
|
475 |
+
"loss": 0.0035,
|
476 |
"step": 780
|
477 |
},
|
478 |
{
|
479 |
"epoch": 526.67,
|
480 |
"learning_rate": 2e-05,
|
481 |
+
"loss": 0.0035,
|
482 |
"step": 790
|
483 |
},
|
484 |
{
|
485 |
"epoch": 533.33,
|
486 |
"learning_rate": 2e-05,
|
487 |
+
"loss": 0.0034,
|
488 |
"step": 800
|
489 |
},
|
490 |
{
|
491 |
"epoch": 540.0,
|
492 |
"learning_rate": 2e-05,
|
493 |
+
"loss": 0.0035,
|
494 |
"step": 810
|
495 |
},
|
496 |
{
|
497 |
"epoch": 546.67,
|
498 |
"learning_rate": 2e-05,
|
499 |
+
"loss": 0.0034,
|
500 |
"step": 820
|
501 |
},
|
502 |
{
|
503 |
"epoch": 553.33,
|
504 |
"learning_rate": 2e-05,
|
505 |
+
"loss": 0.0037,
|
506 |
"step": 830
|
507 |
},
|
508 |
{
|
509 |
"epoch": 560.0,
|
510 |
"learning_rate": 2e-05,
|
511 |
+
"loss": 0.0034,
|
512 |
"step": 840
|
513 |
},
|
514 |
{
|
515 |
"epoch": 566.67,
|
516 |
"learning_rate": 2e-05,
|
517 |
+
"loss": 0.0034,
|
518 |
"step": 850
|
519 |
},
|
520 |
{
|
|
|
532 |
{
|
533 |
"epoch": 586.67,
|
534 |
"learning_rate": 2e-05,
|
535 |
+
"loss": 0.0035,
|
536 |
"step": 880
|
537 |
},
|
538 |
{
|
539 |
"epoch": 593.33,
|
540 |
"learning_rate": 2e-05,
|
541 |
+
"loss": 0.0033,
|
542 |
"step": 890
|
543 |
},
|
544 |
{
|
545 |
"epoch": 600.0,
|
546 |
"learning_rate": 2e-05,
|
547 |
+
"loss": 0.0035,
|
548 |
"step": 900
|
549 |
},
|
550 |
{
|
551 |
"epoch": 606.67,
|
552 |
"learning_rate": 2e-05,
|
553 |
+
"loss": 0.0035,
|
554 |
"step": 910
|
555 |
},
|
556 |
{
|
557 |
"epoch": 613.33,
|
558 |
"learning_rate": 2e-05,
|
559 |
+
"loss": 0.0034,
|
560 |
"step": 920
|
561 |
},
|
562 |
{
|
563 |
"epoch": 620.0,
|
564 |
"learning_rate": 2e-05,
|
565 |
+
"loss": 0.0033,
|
566 |
"step": 930
|
567 |
},
|
568 |
{
|
569 |
"epoch": 626.67,
|
570 |
"learning_rate": 2e-05,
|
571 |
+
"loss": 0.0034,
|
572 |
"step": 940
|
573 |
},
|
574 |
{
|
575 |
"epoch": 633.33,
|
576 |
"learning_rate": 2e-05,
|
577 |
+
"loss": 0.0035,
|
578 |
"step": 950
|
579 |
},
|
580 |
{
|
581 |
"epoch": 640.0,
|
582 |
"learning_rate": 2e-05,
|
583 |
+
"loss": 0.0034,
|
584 |
"step": 960
|
585 |
},
|
586 |
{
|
587 |
"epoch": 646.67,
|
588 |
"learning_rate": 2e-05,
|
589 |
+
"loss": 0.0035,
|
590 |
"step": 970
|
591 |
},
|
592 |
{
|
593 |
"epoch": 653.33,
|
594 |
"learning_rate": 2e-05,
|
595 |
+
"loss": 0.0034,
|
596 |
"step": 980
|
597 |
},
|
598 |
{
|
599 |
"epoch": 660.0,
|
600 |
"learning_rate": 2e-05,
|
601 |
+
"loss": 0.0035,
|
602 |
"step": 990
|
603 |
},
|
604 |
{
|
605 |
"epoch": 666.67,
|
606 |
"learning_rate": 2e-05,
|
607 |
+
"loss": 0.0034,
|
608 |
"step": 1000
|
609 |
},
|
610 |
{
|
611 |
"epoch": 673.33,
|
612 |
"learning_rate": 2e-05,
|
613 |
+
"loss": 0.0035,
|
614 |
"step": 1010
|
615 |
},
|
616 |
{
|
617 |
"epoch": 680.0,
|
618 |
"learning_rate": 2e-05,
|
619 |
+
"loss": 0.0034,
|
620 |
"step": 1020
|
621 |
},
|
622 |
{
|
|
|
628 |
{
|
629 |
"epoch": 693.33,
|
630 |
"learning_rate": 2e-05,
|
631 |
+
"loss": 0.0033,
|
632 |
"step": 1040
|
633 |
},
|
634 |
{
|
|
|
646 |
{
|
647 |
"epoch": 713.33,
|
648 |
"learning_rate": 2e-05,
|
649 |
+
"loss": 0.0035,
|
650 |
"step": 1070
|
651 |
},
|
652 |
{
|
653 |
"epoch": 720.0,
|
654 |
"learning_rate": 2e-05,
|
655 |
+
"loss": 0.0035,
|
656 |
"step": 1080
|
657 |
},
|
658 |
{
|
659 |
"epoch": 726.67,
|
660 |
"learning_rate": 2e-05,
|
661 |
+
"loss": 0.0035,
|
662 |
"step": 1090
|
663 |
},
|
664 |
{
|
665 |
"epoch": 733.33,
|
666 |
"learning_rate": 2e-05,
|
667 |
+
"loss": 0.0034,
|
668 |
"step": 1100
|
669 |
},
|
670 |
{
|
671 |
"epoch": 740.0,
|
672 |
"learning_rate": 2e-05,
|
673 |
+
"loss": 0.0034,
|
674 |
"step": 1110
|
675 |
},
|
676 |
{
|
677 |
"epoch": 746.67,
|
678 |
"learning_rate": 2e-05,
|
679 |
+
"loss": 0.0034,
|
680 |
"step": 1120
|
681 |
},
|
682 |
{
|
683 |
"epoch": 753.33,
|
684 |
"learning_rate": 2e-05,
|
685 |
+
"loss": 0.0035,
|
686 |
"step": 1130
|
687 |
},
|
688 |
{
|
689 |
"epoch": 760.0,
|
690 |
"learning_rate": 2e-05,
|
691 |
+
"loss": 0.0035,
|
692 |
"step": 1140
|
693 |
},
|
694 |
{
|
695 |
"epoch": 766.67,
|
696 |
"learning_rate": 2e-05,
|
697 |
+
"loss": 0.0039,
|
698 |
"step": 1150
|
699 |
},
|
700 |
{
|
701 |
"epoch": 773.33,
|
702 |
"learning_rate": 2e-05,
|
703 |
+
"loss": 0.0049,
|
704 |
"step": 1160
|
705 |
},
|
706 |
{
|
707 |
"epoch": 780.0,
|
708 |
"learning_rate": 2e-05,
|
709 |
+
"loss": 0.0049,
|
710 |
"step": 1170
|
711 |
},
|
712 |
{
|
713 |
"epoch": 786.67,
|
714 |
"learning_rate": 2e-05,
|
715 |
+
"loss": 0.0048,
|
716 |
"step": 1180
|
717 |
},
|
718 |
{
|
719 |
"epoch": 793.33,
|
720 |
"learning_rate": 2e-05,
|
721 |
+
"loss": 0.0048,
|
722 |
"step": 1190
|
723 |
},
|
724 |
{
|
725 |
"epoch": 800.0,
|
726 |
"learning_rate": 2e-05,
|
727 |
+
"loss": 0.0046,
|
728 |
"step": 1200
|
729 |
},
|
730 |
{
|
731 |
"epoch": 806.67,
|
732 |
"learning_rate": 2e-05,
|
733 |
+
"loss": 0.0041,
|
734 |
"step": 1210
|
735 |
},
|
736 |
{
|
737 |
"epoch": 813.33,
|
738 |
"learning_rate": 2e-05,
|
739 |
+
"loss": 0.0038,
|
740 |
"step": 1220
|
741 |
},
|
742 |
{
|
743 |
"epoch": 820.0,
|
744 |
"learning_rate": 2e-05,
|
745 |
+
"loss": 0.0043,
|
746 |
"step": 1230
|
747 |
},
|
748 |
{
|
749 |
"epoch": 826.67,
|
750 |
"learning_rate": 2e-05,
|
751 |
+
"loss": 0.0042,
|
752 |
"step": 1240
|
753 |
},
|
754 |
{
|
755 |
"epoch": 833.33,
|
756 |
"learning_rate": 2e-05,
|
757 |
+
"loss": 0.004,
|
758 |
"step": 1250
|
759 |
},
|
760 |
{
|
761 |
"epoch": 840.0,
|
762 |
"learning_rate": 2e-05,
|
763 |
+
"loss": 0.0037,
|
764 |
"step": 1260
|
765 |
},
|
766 |
{
|
767 |
"epoch": 846.67,
|
768 |
"learning_rate": 2e-05,
|
769 |
+
"loss": 0.0043,
|
770 |
"step": 1270
|
771 |
},
|
772 |
{
|
773 |
"epoch": 853.33,
|
774 |
"learning_rate": 2e-05,
|
775 |
+
"loss": 0.0037,
|
776 |
"step": 1280
|
777 |
},
|
778 |
{
|
779 |
"epoch": 860.0,
|
780 |
"learning_rate": 2e-05,
|
781 |
+
"loss": 0.004,
|
782 |
"step": 1290
|
783 |
},
|
784 |
{
|
785 |
"epoch": 866.67,
|
786 |
"learning_rate": 2e-05,
|
787 |
+
"loss": 0.004,
|
788 |
"step": 1300
|
789 |
},
|
790 |
{
|
791 |
"epoch": 873.33,
|
792 |
"learning_rate": 2e-05,
|
793 |
+
"loss": 0.0051,
|
794 |
"step": 1310
|
795 |
},
|
796 |
{
|
797 |
"epoch": 880.0,
|
798 |
"learning_rate": 2e-05,
|
799 |
+
"loss": 0.0127,
|
800 |
"step": 1320
|
801 |
},
|
802 |
{
|
803 |
"epoch": 886.67,
|
804 |
"learning_rate": 2e-05,
|
805 |
+
"loss": 0.0082,
|
806 |
"step": 1330
|
807 |
},
|
808 |
{
|
809 |
"epoch": 893.33,
|
810 |
"learning_rate": 2e-05,
|
811 |
+
"loss": 0.0193,
|
812 |
"step": 1340
|
813 |
},
|
814 |
{
|
815 |
"epoch": 900.0,
|
816 |
"learning_rate": 2e-05,
|
817 |
+
"loss": 0.0072,
|
818 |
"step": 1350
|
819 |
},
|
820 |
{
|
821 |
"epoch": 906.67,
|
822 |
"learning_rate": 2e-05,
|
823 |
+
"loss": 0.0055,
|
824 |
"step": 1360
|
825 |
},
|
826 |
{
|
827 |
"epoch": 913.33,
|
828 |
"learning_rate": 2e-05,
|
829 |
+
"loss": 0.0052,
|
830 |
"step": 1370
|
831 |
},
|
832 |
{
|
833 |
"epoch": 920.0,
|
834 |
"learning_rate": 2e-05,
|
835 |
+
"loss": 0.0045,
|
836 |
"step": 1380
|
837 |
},
|
838 |
{
|
839 |
"epoch": 926.67,
|
840 |
"learning_rate": 2e-05,
|
841 |
+
"loss": 0.0042,
|
842 |
"step": 1390
|
843 |
},
|
844 |
{
|
845 |
"epoch": 933.33,
|
846 |
"learning_rate": 2e-05,
|
847 |
+
"loss": 0.0042,
|
848 |
"step": 1400
|
849 |
},
|
850 |
{
|
851 |
"epoch": 940.0,
|
852 |
"learning_rate": 2e-05,
|
853 |
+
"loss": 0.0037,
|
854 |
"step": 1410
|
855 |
},
|
856 |
{
|
857 |
"epoch": 946.67,
|
858 |
"learning_rate": 2e-05,
|
859 |
+
"loss": 0.0037,
|
860 |
"step": 1420
|
861 |
},
|
862 |
{
|
863 |
"epoch": 953.33,
|
864 |
"learning_rate": 2e-05,
|
865 |
+
"loss": 0.0038,
|
866 |
"step": 1430
|
867 |
},
|
868 |
{
|
869 |
"epoch": 960.0,
|
870 |
"learning_rate": 2e-05,
|
871 |
+
"loss": 0.0036,
|
872 |
"step": 1440
|
873 |
},
|
874 |
{
|
875 |
"epoch": 966.67,
|
876 |
"learning_rate": 2e-05,
|
877 |
+
"loss": 0.0037,
|
878 |
"step": 1450
|
879 |
},
|
880 |
{
|
881 |
"epoch": 973.33,
|
882 |
"learning_rate": 2e-05,
|
883 |
+
"loss": 0.0035,
|
884 |
"step": 1460
|
885 |
},
|
886 |
{
|
887 |
"epoch": 980.0,
|
888 |
"learning_rate": 2e-05,
|
889 |
+
"loss": 0.0037,
|
890 |
"step": 1470
|
891 |
},
|
892 |
{
|
893 |
"epoch": 986.67,
|
894 |
"learning_rate": 2e-05,
|
895 |
+
"loss": 0.0035,
|
896 |
"step": 1480
|
897 |
},
|
898 |
{
|
899 |
"epoch": 993.33,
|
900 |
"learning_rate": 2e-05,
|
901 |
+
"loss": 0.0034,
|
902 |
"step": 1490
|
903 |
},
|
904 |
{
|
905 |
"epoch": 1000.0,
|
906 |
"learning_rate": 2e-05,
|
907 |
+
"loss": 0.0035,
|
908 |
"step": 1500
|
909 |
},
|
910 |
{
|
911 |
+
"epoch": 1006.67,
|
912 |
+
"learning_rate": 2e-05,
|
913 |
+
"loss": 0.0035,
|
914 |
+
"step": 1510
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 1013.33,
|
918 |
+
"learning_rate": 2e-05,
|
919 |
+
"loss": 0.0035,
|
920 |
+
"step": 1520
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 1020.0,
|
924 |
+
"learning_rate": 2e-05,
|
925 |
+
"loss": 0.0034,
|
926 |
+
"step": 1530
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1026.67,
|
930 |
+
"learning_rate": 2e-05,
|
931 |
+
"loss": 0.0035,
|
932 |
+
"step": 1540
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1033.33,
|
936 |
+
"learning_rate": 2e-05,
|
937 |
+
"loss": 0.0034,
|
938 |
+
"step": 1550
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 1040.0,
|
942 |
+
"learning_rate": 2e-05,
|
943 |
+
"loss": 0.0034,
|
944 |
+
"step": 1560
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1046.67,
|
948 |
+
"learning_rate": 2e-05,
|
949 |
+
"loss": 0.0032,
|
950 |
+
"step": 1570
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1053.33,
|
954 |
+
"learning_rate": 2e-05,
|
955 |
+
"loss": 0.0032,
|
956 |
+
"step": 1580
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 1060.0,
|
960 |
+
"learning_rate": 2e-05,
|
961 |
+
"loss": 0.0034,
|
962 |
+
"step": 1590
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 1066.67,
|
966 |
+
"learning_rate": 2e-05,
|
967 |
+
"loss": 0.0034,
|
968 |
+
"step": 1600
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1073.33,
|
972 |
+
"learning_rate": 2e-05,
|
973 |
+
"loss": 0.0033,
|
974 |
+
"step": 1610
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1080.0,
|
978 |
+
"learning_rate": 2e-05,
|
979 |
+
"loss": 0.0033,
|
980 |
+
"step": 1620
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 1086.67,
|
984 |
+
"learning_rate": 2e-05,
|
985 |
+
"loss": 0.0034,
|
986 |
+
"step": 1630
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1093.33,
|
990 |
+
"learning_rate": 2e-05,
|
991 |
+
"loss": 0.0032,
|
992 |
+
"step": 1640
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 1100.0,
|
996 |
+
"learning_rate": 2e-05,
|
997 |
+
"loss": 0.0032,
|
998 |
+
"step": 1650
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 1106.67,
|
1002 |
+
"learning_rate": 2e-05,
|
1003 |
+
"loss": 0.0032,
|
1004 |
+
"step": 1660
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1113.33,
|
1008 |
+
"learning_rate": 2e-05,
|
1009 |
+
"loss": 0.0033,
|
1010 |
+
"step": 1670
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1120.0,
|
1014 |
+
"learning_rate": 2e-05,
|
1015 |
+
"loss": 0.0033,
|
1016 |
+
"step": 1680
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1126.67,
|
1020 |
+
"learning_rate": 2e-05,
|
1021 |
+
"loss": 0.0032,
|
1022 |
+
"step": 1690
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1133.33,
|
1026 |
+
"learning_rate": 2e-05,
|
1027 |
+
"loss": 0.0032,
|
1028 |
+
"step": 1700
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1140.0,
|
1032 |
+
"learning_rate": 2e-05,
|
1033 |
+
"loss": 0.0032,
|
1034 |
+
"step": 1710
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1146.67,
|
1038 |
+
"learning_rate": 2e-05,
|
1039 |
+
"loss": 0.0033,
|
1040 |
+
"step": 1720
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1153.33,
|
1044 |
+
"learning_rate": 2e-05,
|
1045 |
+
"loss": 0.0034,
|
1046 |
+
"step": 1730
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1160.0,
|
1050 |
+
"learning_rate": 2e-05,
|
1051 |
+
"loss": 0.0034,
|
1052 |
+
"step": 1740
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1166.67,
|
1056 |
+
"learning_rate": 2e-05,
|
1057 |
+
"loss": 0.0032,
|
1058 |
+
"step": 1750
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1173.33,
|
1062 |
+
"learning_rate": 2e-05,
|
1063 |
+
"loss": 0.0033,
|
1064 |
+
"step": 1760
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 1180.0,
|
1068 |
+
"learning_rate": 2e-05,
|
1069 |
+
"loss": 0.0032,
|
1070 |
+
"step": 1770
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1186.67,
|
1074 |
+
"learning_rate": 2e-05,
|
1075 |
+
"loss": 0.0032,
|
1076 |
+
"step": 1780
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1193.33,
|
1080 |
+
"learning_rate": 2e-05,
|
1081 |
+
"loss": 0.0032,
|
1082 |
+
"step": 1790
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 1200.0,
|
1086 |
+
"learning_rate": 2e-05,
|
1087 |
+
"loss": 0.0032,
|
1088 |
+
"step": 1800
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 1206.67,
|
1092 |
+
"learning_rate": 2e-05,
|
1093 |
+
"loss": 0.0032,
|
1094 |
+
"step": 1810
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1213.33,
|
1098 |
+
"learning_rate": 2e-05,
|
1099 |
+
"loss": 0.0043,
|
1100 |
+
"step": 1820
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 1220.0,
|
1104 |
+
"learning_rate": 2e-05,
|
1105 |
+
"loss": 0.0034,
|
1106 |
+
"step": 1830
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 1226.67,
|
1110 |
+
"learning_rate": 2e-05,
|
1111 |
+
"loss": 0.0032,
|
1112 |
+
"step": 1840
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 1233.33,
|
1116 |
+
"learning_rate": 2e-05,
|
1117 |
+
"loss": 0.0034,
|
1118 |
+
"step": 1850
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 1240.0,
|
1122 |
+
"learning_rate": 2e-05,
|
1123 |
+
"loss": 0.0063,
|
1124 |
+
"step": 1860
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 1246.67,
|
1128 |
+
"learning_rate": 2e-05,
|
1129 |
+
"loss": 0.0032,
|
1130 |
+
"step": 1870
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1253.33,
|
1134 |
+
"learning_rate": 2e-05,
|
1135 |
+
"loss": 0.0061,
|
1136 |
+
"step": 1880
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1260.0,
|
1140 |
+
"learning_rate": 2e-05,
|
1141 |
+
"loss": 0.0071,
|
1142 |
+
"step": 1890
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 1266.67,
|
1146 |
+
"learning_rate": 2e-05,
|
1147 |
+
"loss": 0.0055,
|
1148 |
+
"step": 1900
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 1273.33,
|
1152 |
+
"learning_rate": 2e-05,
|
1153 |
+
"loss": 0.0053,
|
1154 |
+
"step": 1910
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 1280.0,
|
1158 |
+
"learning_rate": 2e-05,
|
1159 |
+
"loss": 0.0043,
|
1160 |
+
"step": 1920
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1286.67,
|
1164 |
+
"learning_rate": 2e-05,
|
1165 |
+
"loss": 0.0042,
|
1166 |
+
"step": 1930
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 1293.33,
|
1170 |
+
"learning_rate": 2e-05,
|
1171 |
+
"loss": 0.0039,
|
1172 |
+
"step": 1940
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1300.0,
|
1176 |
+
"learning_rate": 2e-05,
|
1177 |
+
"loss": 0.004,
|
1178 |
+
"step": 1950
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1306.67,
|
1182 |
+
"learning_rate": 2e-05,
|
1183 |
+
"loss": 0.0038,
|
1184 |
+
"step": 1960
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 1313.33,
|
1188 |
+
"learning_rate": 2e-05,
|
1189 |
+
"loss": 0.004,
|
1190 |
+
"step": 1970
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 1320.0,
|
1194 |
+
"learning_rate": 2e-05,
|
1195 |
+
"loss": 0.0038,
|
1196 |
+
"step": 1980
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1326.67,
|
1200 |
+
"learning_rate": 2e-05,
|
1201 |
+
"loss": 0.0036,
|
1202 |
+
"step": 1990
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1333.33,
|
1206 |
+
"learning_rate": 2e-05,
|
1207 |
+
"loss": 0.0036,
|
1208 |
+
"step": 2000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 1334.0,
|
1212 |
+
"step": 2001,
|
1213 |
+
"total_flos": 841939628851200.0,
|
1214 |
+
"train_loss": 0.02562973479824564,
|
1215 |
+
"train_runtime": 85372.5158,
|
1216 |
"train_samples_per_second": 3.0,
|
1217 |
"train_steps_per_second": 0.023
|
1218 |
}
|
1219 |
],
|
1220 |
+
"max_steps": 2001,
|
1221 |
+
"num_train_epochs": 2001,
|
1222 |
+
"total_flos": 841939628851200.0,
|
1223 |
"trial_name": null,
|
1224 |
"trial_params": null
|
1225 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5563
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6f37d82e0ffda307f018bd024cb5411a96a38d758bc5f0c3bd5e051be3c5dc1
|
3 |
size 5563
|