nielsbantilan commited on
Commit
9c519d5
·
1 Parent(s): 716ac84

Upload folder using huggingface_hub

Browse files
Files changed (38) hide show
  1. checkpoint-2000/config.json +26 -0
  2. checkpoint-2000/generation_config.json +6 -0
  3. checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  4. checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  6. checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  8. checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  10. checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  12. checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  15. checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  17. checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  19. checkpoint-2000/latest +1 -0
  20. checkpoint-2000/pytorch_model.bin +3 -0
  21. checkpoint-2000/rng_state_0.pth +3 -0
  22. checkpoint-2000/rng_state_1.pth +3 -0
  23. checkpoint-2000/rng_state_2.pth +3 -0
  24. checkpoint-2000/rng_state_3.pth +3 -0
  25. checkpoint-2000/rng_state_4.pth +3 -0
  26. checkpoint-2000/rng_state_5.pth +3 -0
  27. checkpoint-2000/rng_state_6.pth +3 -0
  28. checkpoint-2000/rng_state_7.pth +3 -0
  29. checkpoint-2000/special_tokens_map.json +6 -0
  30. checkpoint-2000/tokenizer.json +0 -0
  31. checkpoint-2000/tokenizer_config.json +11 -0
  32. checkpoint-2000/trainer_state.json +1216 -0
  33. checkpoint-2000/training_args.bin +3 -0
  34. checkpoint-2000/zero_to_fp32.py +483 -0
  35. flyte_training_config.json +1 -1
  36. pytorch_model.bin +1 -1
  37. trainer_state.json +452 -152
  38. training_args.bin +1 -1
checkpoint-2000/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "togethercomputer/RedPajama-INCITE-Base-3B-v1",
3
+ "architectures": [
4
+ "GPTNeoXForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": 0.1,
8
+ "eos_token_id": 0,
9
+ "hidden_act": "gelu",
10
+ "hidden_size": 2560,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 10240,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "gpt_neox",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "rotary_emb_base": 10000,
19
+ "rotary_pct": 1.0,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "float16",
22
+ "transformers_version": "4.29.2",
23
+ "use_cache": true,
24
+ "use_parallel_residual": false,
25
+ "vocab_size": 50432
26
+ }
checkpoint-2000/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.29.2"
6
+ }
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae0f6f03e2b9a042e7040d37571dda22bd0d3e950df03ed5e4680affaebe259b
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6469298c8ace90fbc7971259714e479bb9737cc6c51f64a35d18e328c12e9ad5
3
+ size 4163799934
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b607792f96f06e258eec60ef22dcc98b30de0ad9bd562bc74a3a0f3e27dbba8
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:befae2d8bb07e538242bcaa6b5a2f05b78e65d2ce137fc40418c066a1c83c438
3
+ size 4163799934
checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f97bc04e27ce3ffe3ce67efabfa7e39013a771ebe34c9c0f1209c5ba79f9726
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fb121882454f4bcd5bc7d138491c07425a145392908fc4ebb0ffa8fbec0127e
3
+ size 4163799934
checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2148d28ad84e3ca2dbea7cdb4ea8ad87377dc902e70eb9dc8954f489a029d448
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:beff7de1f10add0f38eec5deb06b9b5b0be956388fb7c9b7ad25013b6beddca3
3
+ size 4163799934
checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68b801eff4581db2df051b70bc0ad27541d48905c1a5a62087906cd1155a05f2
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:421b5a808ae76da386bf0d4b2d2f6e8f4b5249726379793dc781abba11cced76
3
+ size 4163799934
checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37d12e876d126a72a887d165ebc0f7e0da7a0254a0a99441add1a427778d055
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b68830f940fb8d8571a2a3b8e53bc68672f2ec72b2fb64856d81f6d366acba4
3
+ size 4163799934
checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99dd15972281c642940b47f190323f2794d09fe4692091f47139f923f40bea9a
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa08c5fc751191064a192d03ca7b5e6964aff16f3a55b121e71c924e2b6155e0
3
+ size 4163799934
checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36d07c4e5ee7ef1707a189669fb0567221e81a6e3d6924efa5f21097e76c7e3b
3
+ size 134451731
checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f1e6a8b930a05f5e00f10db83dc5c6766abd1be24fffa44ff3db705684db599
3
+ size 4163799934
checkpoint-2000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2000
checkpoint-2000/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b41d1298850da0d466fd2e4c29f479ff3b63ee88a71380e65a10da57e5a1b86
3
+ size 5686106713
checkpoint-2000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f861394d4c199f79c4525d5c4e4a61b3b63c86a2b1d3dc24b3dc7a2cc4fa854
3
+ size 21687
checkpoint-2000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd08b19f43c113c5022aca7a2acf0240613bc8251cd7af1148f3c44559e35154
3
+ size 21687
checkpoint-2000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c00d88da7de57a836e00899e7c78e54c079c1a1fe1e7043fc0be33366a97fe0
3
+ size 21687
checkpoint-2000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6188a73b12856dc180d93425453d17da5bdd83832db408e0f7d2083eaa43ba5
3
+ size 21687
checkpoint-2000/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d19b7bd12d313b6f367b34796e48df3b04d36d8495ca95d863ee4f2336c70e4e
3
+ size 21687
checkpoint-2000/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6256ffefcfd855ee249d911b58b6816ea62a0d91948199d62ecf03d4c97de31
3
+ size 21687
checkpoint-2000/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:547eb574539d57fcd695b847934f427c088fd30c5dbc54a5f3359143a7c4b460
3
+ size 21687
checkpoint-2000/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181de8aa271fc693ebecd232d432aae59ec9f7545015a370608182c9b36e0cfa
3
+ size 21687
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "<|endoftext|>"
6
+ }
checkpoint-2000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/tokenizer_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 512,
7
+ "pad_token": "[PAD]",
8
+ "padding_side": "right",
9
+ "tokenizer_class": "GPTNeoXTokenizer",
10
+ "unk_token": "<|endoftext|>"
11
+ }
checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,1216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1333.3333333333333,
5
+ "global_step": 2000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 6.67,
12
+ "learning_rate": 9.46713625058711e-06,
13
+ "loss": 2.0455,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 13.33,
18
+ "learning_rate": 1.3783995508828243e-05,
19
+ "loss": 1.425,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 20.0,
24
+ "learning_rate": 1.603472631319529e-05,
25
+ "loss": 0.5237,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 26.67,
30
+ "learning_rate": 1.7567641489142956e-05,
31
+ "loss": 0.1184,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 33.33,
36
+ "learning_rate": 1.8731528764550483e-05,
37
+ "loss": 0.0585,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 40.0,
42
+ "learning_rate": 1.9670033192067303e-05,
43
+ "loss": 0.0411,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 46.67,
48
+ "learning_rate": 2e-05,
49
+ "loss": 0.0321,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 53.33,
54
+ "learning_rate": 2e-05,
55
+ "loss": 0.0232,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 60.0,
60
+ "learning_rate": 2e-05,
61
+ "loss": 0.0182,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 66.67,
66
+ "learning_rate": 2e-05,
67
+ "loss": 0.0137,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 73.33,
72
+ "learning_rate": 2e-05,
73
+ "loss": 0.0111,
74
+ "step": 110
75
+ },
76
+ {
77
+ "epoch": 80.0,
78
+ "learning_rate": 2e-05,
79
+ "loss": 0.0096,
80
+ "step": 120
81
+ },
82
+ {
83
+ "epoch": 86.67,
84
+ "learning_rate": 2e-05,
85
+ "loss": 0.0085,
86
+ "step": 130
87
+ },
88
+ {
89
+ "epoch": 93.33,
90
+ "learning_rate": 2e-05,
91
+ "loss": 0.0078,
92
+ "step": 140
93
+ },
94
+ {
95
+ "epoch": 100.0,
96
+ "learning_rate": 2e-05,
97
+ "loss": 0.007,
98
+ "step": 150
99
+ },
100
+ {
101
+ "epoch": 106.67,
102
+ "learning_rate": 2e-05,
103
+ "loss": 0.0066,
104
+ "step": 160
105
+ },
106
+ {
107
+ "epoch": 113.33,
108
+ "learning_rate": 2e-05,
109
+ "loss": 0.0061,
110
+ "step": 170
111
+ },
112
+ {
113
+ "epoch": 120.0,
114
+ "learning_rate": 2e-05,
115
+ "loss": 0.0057,
116
+ "step": 180
117
+ },
118
+ {
119
+ "epoch": 126.67,
120
+ "learning_rate": 2e-05,
121
+ "loss": 0.0054,
122
+ "step": 190
123
+ },
124
+ {
125
+ "epoch": 133.33,
126
+ "learning_rate": 2e-05,
127
+ "loss": 0.0052,
128
+ "step": 200
129
+ },
130
+ {
131
+ "epoch": 140.0,
132
+ "learning_rate": 2e-05,
133
+ "loss": 0.0049,
134
+ "step": 210
135
+ },
136
+ {
137
+ "epoch": 146.67,
138
+ "learning_rate": 2e-05,
139
+ "loss": 0.0048,
140
+ "step": 220
141
+ },
142
+ {
143
+ "epoch": 153.33,
144
+ "learning_rate": 2e-05,
145
+ "loss": 0.0048,
146
+ "step": 230
147
+ },
148
+ {
149
+ "epoch": 160.0,
150
+ "learning_rate": 2e-05,
151
+ "loss": 0.0045,
152
+ "step": 240
153
+ },
154
+ {
155
+ "epoch": 166.67,
156
+ "learning_rate": 2e-05,
157
+ "loss": 0.0046,
158
+ "step": 250
159
+ },
160
+ {
161
+ "epoch": 173.33,
162
+ "learning_rate": 2e-05,
163
+ "loss": 0.0045,
164
+ "step": 260
165
+ },
166
+ {
167
+ "epoch": 180.0,
168
+ "learning_rate": 2e-05,
169
+ "loss": 0.0041,
170
+ "step": 270
171
+ },
172
+ {
173
+ "epoch": 186.67,
174
+ "learning_rate": 2e-05,
175
+ "loss": 0.0044,
176
+ "step": 280
177
+ },
178
+ {
179
+ "epoch": 193.33,
180
+ "learning_rate": 2e-05,
181
+ "loss": 0.0042,
182
+ "step": 290
183
+ },
184
+ {
185
+ "epoch": 200.0,
186
+ "learning_rate": 2e-05,
187
+ "loss": 0.0042,
188
+ "step": 300
189
+ },
190
+ {
191
+ "epoch": 206.67,
192
+ "learning_rate": 2e-05,
193
+ "loss": 0.0041,
194
+ "step": 310
195
+ },
196
+ {
197
+ "epoch": 213.33,
198
+ "learning_rate": 2e-05,
199
+ "loss": 0.0041,
200
+ "step": 320
201
+ },
202
+ {
203
+ "epoch": 220.0,
204
+ "learning_rate": 2e-05,
205
+ "loss": 0.0041,
206
+ "step": 330
207
+ },
208
+ {
209
+ "epoch": 226.67,
210
+ "learning_rate": 2e-05,
211
+ "loss": 0.004,
212
+ "step": 340
213
+ },
214
+ {
215
+ "epoch": 233.33,
216
+ "learning_rate": 2e-05,
217
+ "loss": 0.004,
218
+ "step": 350
219
+ },
220
+ {
221
+ "epoch": 240.0,
222
+ "learning_rate": 2e-05,
223
+ "loss": 0.0038,
224
+ "step": 360
225
+ },
226
+ {
227
+ "epoch": 246.67,
228
+ "learning_rate": 2e-05,
229
+ "loss": 0.004,
230
+ "step": 370
231
+ },
232
+ {
233
+ "epoch": 253.33,
234
+ "learning_rate": 2e-05,
235
+ "loss": 0.004,
236
+ "step": 380
237
+ },
238
+ {
239
+ "epoch": 260.0,
240
+ "learning_rate": 2e-05,
241
+ "loss": 0.0041,
242
+ "step": 390
243
+ },
244
+ {
245
+ "epoch": 266.67,
246
+ "learning_rate": 2e-05,
247
+ "loss": 0.0039,
248
+ "step": 400
249
+ },
250
+ {
251
+ "epoch": 273.33,
252
+ "learning_rate": 2e-05,
253
+ "loss": 0.0037,
254
+ "step": 410
255
+ },
256
+ {
257
+ "epoch": 280.0,
258
+ "learning_rate": 2e-05,
259
+ "loss": 0.0038,
260
+ "step": 420
261
+ },
262
+ {
263
+ "epoch": 286.67,
264
+ "learning_rate": 2e-05,
265
+ "loss": 0.0038,
266
+ "step": 430
267
+ },
268
+ {
269
+ "epoch": 293.33,
270
+ "learning_rate": 2e-05,
271
+ "loss": 0.004,
272
+ "step": 440
273
+ },
274
+ {
275
+ "epoch": 300.0,
276
+ "learning_rate": 2e-05,
277
+ "loss": 0.0039,
278
+ "step": 450
279
+ },
280
+ {
281
+ "epoch": 306.67,
282
+ "learning_rate": 2e-05,
283
+ "loss": 0.0038,
284
+ "step": 460
285
+ },
286
+ {
287
+ "epoch": 313.33,
288
+ "learning_rate": 2e-05,
289
+ "loss": 0.0037,
290
+ "step": 470
291
+ },
292
+ {
293
+ "epoch": 320.0,
294
+ "learning_rate": 2e-05,
295
+ "loss": 0.0038,
296
+ "step": 480
297
+ },
298
+ {
299
+ "epoch": 326.67,
300
+ "learning_rate": 2e-05,
301
+ "loss": 0.0038,
302
+ "step": 490
303
+ },
304
+ {
305
+ "epoch": 333.33,
306
+ "learning_rate": 2e-05,
307
+ "loss": 0.0037,
308
+ "step": 500
309
+ },
310
+ {
311
+ "epoch": 340.0,
312
+ "learning_rate": 2e-05,
313
+ "loss": 0.0038,
314
+ "step": 510
315
+ },
316
+ {
317
+ "epoch": 346.67,
318
+ "learning_rate": 2e-05,
319
+ "loss": 0.004,
320
+ "step": 520
321
+ },
322
+ {
323
+ "epoch": 353.33,
324
+ "learning_rate": 2e-05,
325
+ "loss": 0.0037,
326
+ "step": 530
327
+ },
328
+ {
329
+ "epoch": 360.0,
330
+ "learning_rate": 2e-05,
331
+ "loss": 0.0039,
332
+ "step": 540
333
+ },
334
+ {
335
+ "epoch": 366.67,
336
+ "learning_rate": 2e-05,
337
+ "loss": 0.0045,
338
+ "step": 550
339
+ },
340
+ {
341
+ "epoch": 373.33,
342
+ "learning_rate": 2e-05,
343
+ "loss": 0.005,
344
+ "step": 560
345
+ },
346
+ {
347
+ "epoch": 380.0,
348
+ "learning_rate": 2e-05,
349
+ "loss": 0.014,
350
+ "step": 570
351
+ },
352
+ {
353
+ "epoch": 386.67,
354
+ "learning_rate": 2e-05,
355
+ "loss": 0.0149,
356
+ "step": 580
357
+ },
358
+ {
359
+ "epoch": 393.33,
360
+ "learning_rate": 2e-05,
361
+ "loss": 0.0084,
362
+ "step": 590
363
+ },
364
+ {
365
+ "epoch": 400.0,
366
+ "learning_rate": 2e-05,
367
+ "loss": 0.0072,
368
+ "step": 600
369
+ },
370
+ {
371
+ "epoch": 406.67,
372
+ "learning_rate": 2e-05,
373
+ "loss": 0.0058,
374
+ "step": 610
375
+ },
376
+ {
377
+ "epoch": 413.33,
378
+ "learning_rate": 2e-05,
379
+ "loss": 0.0053,
380
+ "step": 620
381
+ },
382
+ {
383
+ "epoch": 420.0,
384
+ "learning_rate": 2e-05,
385
+ "loss": 0.0051,
386
+ "step": 630
387
+ },
388
+ {
389
+ "epoch": 426.67,
390
+ "learning_rate": 2e-05,
391
+ "loss": 0.0047,
392
+ "step": 640
393
+ },
394
+ {
395
+ "epoch": 433.33,
396
+ "learning_rate": 2e-05,
397
+ "loss": 0.0045,
398
+ "step": 650
399
+ },
400
+ {
401
+ "epoch": 440.0,
402
+ "learning_rate": 2e-05,
403
+ "loss": 0.0043,
404
+ "step": 660
405
+ },
406
+ {
407
+ "epoch": 446.67,
408
+ "learning_rate": 2e-05,
409
+ "loss": 0.0041,
410
+ "step": 670
411
+ },
412
+ {
413
+ "epoch": 453.33,
414
+ "learning_rate": 2e-05,
415
+ "loss": 0.0039,
416
+ "step": 680
417
+ },
418
+ {
419
+ "epoch": 460.0,
420
+ "learning_rate": 2e-05,
421
+ "loss": 0.0038,
422
+ "step": 690
423
+ },
424
+ {
425
+ "epoch": 466.67,
426
+ "learning_rate": 2e-05,
427
+ "loss": 0.004,
428
+ "step": 700
429
+ },
430
+ {
431
+ "epoch": 473.33,
432
+ "learning_rate": 2e-05,
433
+ "loss": 0.004,
434
+ "step": 710
435
+ },
436
+ {
437
+ "epoch": 480.0,
438
+ "learning_rate": 2e-05,
439
+ "loss": 0.0036,
440
+ "step": 720
441
+ },
442
+ {
443
+ "epoch": 486.67,
444
+ "learning_rate": 2e-05,
445
+ "loss": 0.0036,
446
+ "step": 730
447
+ },
448
+ {
449
+ "epoch": 493.33,
450
+ "learning_rate": 2e-05,
451
+ "loss": 0.0037,
452
+ "step": 740
453
+ },
454
+ {
455
+ "epoch": 500.0,
456
+ "learning_rate": 2e-05,
457
+ "loss": 0.0036,
458
+ "step": 750
459
+ },
460
+ {
461
+ "epoch": 506.67,
462
+ "learning_rate": 2e-05,
463
+ "loss": 0.0034,
464
+ "step": 760
465
+ },
466
+ {
467
+ "epoch": 513.33,
468
+ "learning_rate": 2e-05,
469
+ "loss": 0.0035,
470
+ "step": 770
471
+ },
472
+ {
473
+ "epoch": 520.0,
474
+ "learning_rate": 2e-05,
475
+ "loss": 0.0035,
476
+ "step": 780
477
+ },
478
+ {
479
+ "epoch": 526.67,
480
+ "learning_rate": 2e-05,
481
+ "loss": 0.0035,
482
+ "step": 790
483
+ },
484
+ {
485
+ "epoch": 533.33,
486
+ "learning_rate": 2e-05,
487
+ "loss": 0.0034,
488
+ "step": 800
489
+ },
490
+ {
491
+ "epoch": 540.0,
492
+ "learning_rate": 2e-05,
493
+ "loss": 0.0035,
494
+ "step": 810
495
+ },
496
+ {
497
+ "epoch": 546.67,
498
+ "learning_rate": 2e-05,
499
+ "loss": 0.0034,
500
+ "step": 820
501
+ },
502
+ {
503
+ "epoch": 553.33,
504
+ "learning_rate": 2e-05,
505
+ "loss": 0.0037,
506
+ "step": 830
507
+ },
508
+ {
509
+ "epoch": 560.0,
510
+ "learning_rate": 2e-05,
511
+ "loss": 0.0034,
512
+ "step": 840
513
+ },
514
+ {
515
+ "epoch": 566.67,
516
+ "learning_rate": 2e-05,
517
+ "loss": 0.0034,
518
+ "step": 850
519
+ },
520
+ {
521
+ "epoch": 573.33,
522
+ "learning_rate": 2e-05,
523
+ "loss": 0.0034,
524
+ "step": 860
525
+ },
526
+ {
527
+ "epoch": 580.0,
528
+ "learning_rate": 2e-05,
529
+ "loss": 0.0033,
530
+ "step": 870
531
+ },
532
+ {
533
+ "epoch": 586.67,
534
+ "learning_rate": 2e-05,
535
+ "loss": 0.0035,
536
+ "step": 880
537
+ },
538
+ {
539
+ "epoch": 593.33,
540
+ "learning_rate": 2e-05,
541
+ "loss": 0.0033,
542
+ "step": 890
543
+ },
544
+ {
545
+ "epoch": 600.0,
546
+ "learning_rate": 2e-05,
547
+ "loss": 0.0035,
548
+ "step": 900
549
+ },
550
+ {
551
+ "epoch": 606.67,
552
+ "learning_rate": 2e-05,
553
+ "loss": 0.0035,
554
+ "step": 910
555
+ },
556
+ {
557
+ "epoch": 613.33,
558
+ "learning_rate": 2e-05,
559
+ "loss": 0.0034,
560
+ "step": 920
561
+ },
562
+ {
563
+ "epoch": 620.0,
564
+ "learning_rate": 2e-05,
565
+ "loss": 0.0033,
566
+ "step": 930
567
+ },
568
+ {
569
+ "epoch": 626.67,
570
+ "learning_rate": 2e-05,
571
+ "loss": 0.0034,
572
+ "step": 940
573
+ },
574
+ {
575
+ "epoch": 633.33,
576
+ "learning_rate": 2e-05,
577
+ "loss": 0.0035,
578
+ "step": 950
579
+ },
580
+ {
581
+ "epoch": 640.0,
582
+ "learning_rate": 2e-05,
583
+ "loss": 0.0034,
584
+ "step": 960
585
+ },
586
+ {
587
+ "epoch": 646.67,
588
+ "learning_rate": 2e-05,
589
+ "loss": 0.0035,
590
+ "step": 970
591
+ },
592
+ {
593
+ "epoch": 653.33,
594
+ "learning_rate": 2e-05,
595
+ "loss": 0.0034,
596
+ "step": 980
597
+ },
598
+ {
599
+ "epoch": 660.0,
600
+ "learning_rate": 2e-05,
601
+ "loss": 0.0035,
602
+ "step": 990
603
+ },
604
+ {
605
+ "epoch": 666.67,
606
+ "learning_rate": 2e-05,
607
+ "loss": 0.0034,
608
+ "step": 1000
609
+ },
610
+ {
611
+ "epoch": 673.33,
612
+ "learning_rate": 2e-05,
613
+ "loss": 0.0035,
614
+ "step": 1010
615
+ },
616
+ {
617
+ "epoch": 680.0,
618
+ "learning_rate": 2e-05,
619
+ "loss": 0.0034,
620
+ "step": 1020
621
+ },
622
+ {
623
+ "epoch": 686.67,
624
+ "learning_rate": 2e-05,
625
+ "loss": 0.0034,
626
+ "step": 1030
627
+ },
628
+ {
629
+ "epoch": 693.33,
630
+ "learning_rate": 2e-05,
631
+ "loss": 0.0033,
632
+ "step": 1040
633
+ },
634
+ {
635
+ "epoch": 700.0,
636
+ "learning_rate": 2e-05,
637
+ "loss": 0.0033,
638
+ "step": 1050
639
+ },
640
+ {
641
+ "epoch": 706.67,
642
+ "learning_rate": 2e-05,
643
+ "loss": 0.0033,
644
+ "step": 1060
645
+ },
646
+ {
647
+ "epoch": 713.33,
648
+ "learning_rate": 2e-05,
649
+ "loss": 0.0035,
650
+ "step": 1070
651
+ },
652
+ {
653
+ "epoch": 720.0,
654
+ "learning_rate": 2e-05,
655
+ "loss": 0.0035,
656
+ "step": 1080
657
+ },
658
+ {
659
+ "epoch": 726.67,
660
+ "learning_rate": 2e-05,
661
+ "loss": 0.0035,
662
+ "step": 1090
663
+ },
664
+ {
665
+ "epoch": 733.33,
666
+ "learning_rate": 2e-05,
667
+ "loss": 0.0034,
668
+ "step": 1100
669
+ },
670
+ {
671
+ "epoch": 740.0,
672
+ "learning_rate": 2e-05,
673
+ "loss": 0.0034,
674
+ "step": 1110
675
+ },
676
+ {
677
+ "epoch": 746.67,
678
+ "learning_rate": 2e-05,
679
+ "loss": 0.0034,
680
+ "step": 1120
681
+ },
682
+ {
683
+ "epoch": 753.33,
684
+ "learning_rate": 2e-05,
685
+ "loss": 0.0035,
686
+ "step": 1130
687
+ },
688
+ {
689
+ "epoch": 760.0,
690
+ "learning_rate": 2e-05,
691
+ "loss": 0.0035,
692
+ "step": 1140
693
+ },
694
+ {
695
+ "epoch": 766.67,
696
+ "learning_rate": 2e-05,
697
+ "loss": 0.0039,
698
+ "step": 1150
699
+ },
700
+ {
701
+ "epoch": 773.33,
702
+ "learning_rate": 2e-05,
703
+ "loss": 0.0049,
704
+ "step": 1160
705
+ },
706
+ {
707
+ "epoch": 780.0,
708
+ "learning_rate": 2e-05,
709
+ "loss": 0.0049,
710
+ "step": 1170
711
+ },
712
+ {
713
+ "epoch": 786.67,
714
+ "learning_rate": 2e-05,
715
+ "loss": 0.0048,
716
+ "step": 1180
717
+ },
718
+ {
719
+ "epoch": 793.33,
720
+ "learning_rate": 2e-05,
721
+ "loss": 0.0048,
722
+ "step": 1190
723
+ },
724
+ {
725
+ "epoch": 800.0,
726
+ "learning_rate": 2e-05,
727
+ "loss": 0.0046,
728
+ "step": 1200
729
+ },
730
+ {
731
+ "epoch": 806.67,
732
+ "learning_rate": 2e-05,
733
+ "loss": 0.0041,
734
+ "step": 1210
735
+ },
736
+ {
737
+ "epoch": 813.33,
738
+ "learning_rate": 2e-05,
739
+ "loss": 0.0038,
740
+ "step": 1220
741
+ },
742
+ {
743
+ "epoch": 820.0,
744
+ "learning_rate": 2e-05,
745
+ "loss": 0.0043,
746
+ "step": 1230
747
+ },
748
+ {
749
+ "epoch": 826.67,
750
+ "learning_rate": 2e-05,
751
+ "loss": 0.0042,
752
+ "step": 1240
753
+ },
754
+ {
755
+ "epoch": 833.33,
756
+ "learning_rate": 2e-05,
757
+ "loss": 0.004,
758
+ "step": 1250
759
+ },
760
+ {
761
+ "epoch": 840.0,
762
+ "learning_rate": 2e-05,
763
+ "loss": 0.0037,
764
+ "step": 1260
765
+ },
766
+ {
767
+ "epoch": 846.67,
768
+ "learning_rate": 2e-05,
769
+ "loss": 0.0043,
770
+ "step": 1270
771
+ },
772
+ {
773
+ "epoch": 853.33,
774
+ "learning_rate": 2e-05,
775
+ "loss": 0.0037,
776
+ "step": 1280
777
+ },
778
+ {
779
+ "epoch": 860.0,
780
+ "learning_rate": 2e-05,
781
+ "loss": 0.004,
782
+ "step": 1290
783
+ },
784
+ {
785
+ "epoch": 866.67,
786
+ "learning_rate": 2e-05,
787
+ "loss": 0.004,
788
+ "step": 1300
789
+ },
790
+ {
791
+ "epoch": 873.33,
792
+ "learning_rate": 2e-05,
793
+ "loss": 0.0051,
794
+ "step": 1310
795
+ },
796
+ {
797
+ "epoch": 880.0,
798
+ "learning_rate": 2e-05,
799
+ "loss": 0.0127,
800
+ "step": 1320
801
+ },
802
+ {
803
+ "epoch": 886.67,
804
+ "learning_rate": 2e-05,
805
+ "loss": 0.0082,
806
+ "step": 1330
807
+ },
808
+ {
809
+ "epoch": 893.33,
810
+ "learning_rate": 2e-05,
811
+ "loss": 0.0193,
812
+ "step": 1340
813
+ },
814
+ {
815
+ "epoch": 900.0,
816
+ "learning_rate": 2e-05,
817
+ "loss": 0.0072,
818
+ "step": 1350
819
+ },
820
+ {
821
+ "epoch": 906.67,
822
+ "learning_rate": 2e-05,
823
+ "loss": 0.0055,
824
+ "step": 1360
825
+ },
826
+ {
827
+ "epoch": 913.33,
828
+ "learning_rate": 2e-05,
829
+ "loss": 0.0052,
830
+ "step": 1370
831
+ },
832
+ {
833
+ "epoch": 920.0,
834
+ "learning_rate": 2e-05,
835
+ "loss": 0.0045,
836
+ "step": 1380
837
+ },
838
+ {
839
+ "epoch": 926.67,
840
+ "learning_rate": 2e-05,
841
+ "loss": 0.0042,
842
+ "step": 1390
843
+ },
844
+ {
845
+ "epoch": 933.33,
846
+ "learning_rate": 2e-05,
847
+ "loss": 0.0042,
848
+ "step": 1400
849
+ },
850
+ {
851
+ "epoch": 940.0,
852
+ "learning_rate": 2e-05,
853
+ "loss": 0.0037,
854
+ "step": 1410
855
+ },
856
+ {
857
+ "epoch": 946.67,
858
+ "learning_rate": 2e-05,
859
+ "loss": 0.0037,
860
+ "step": 1420
861
+ },
862
+ {
863
+ "epoch": 953.33,
864
+ "learning_rate": 2e-05,
865
+ "loss": 0.0038,
866
+ "step": 1430
867
+ },
868
+ {
869
+ "epoch": 960.0,
870
+ "learning_rate": 2e-05,
871
+ "loss": 0.0036,
872
+ "step": 1440
873
+ },
874
+ {
875
+ "epoch": 966.67,
876
+ "learning_rate": 2e-05,
877
+ "loss": 0.0037,
878
+ "step": 1450
879
+ },
880
+ {
881
+ "epoch": 973.33,
882
+ "learning_rate": 2e-05,
883
+ "loss": 0.0035,
884
+ "step": 1460
885
+ },
886
+ {
887
+ "epoch": 980.0,
888
+ "learning_rate": 2e-05,
889
+ "loss": 0.0037,
890
+ "step": 1470
891
+ },
892
+ {
893
+ "epoch": 986.67,
894
+ "learning_rate": 2e-05,
895
+ "loss": 0.0035,
896
+ "step": 1480
897
+ },
898
+ {
899
+ "epoch": 993.33,
900
+ "learning_rate": 2e-05,
901
+ "loss": 0.0034,
902
+ "step": 1490
903
+ },
904
+ {
905
+ "epoch": 1000.0,
906
+ "learning_rate": 2e-05,
907
+ "loss": 0.0035,
908
+ "step": 1500
909
+ },
910
+ {
911
+ "epoch": 1006.67,
912
+ "learning_rate": 2e-05,
913
+ "loss": 0.0035,
914
+ "step": 1510
915
+ },
916
+ {
917
+ "epoch": 1013.33,
918
+ "learning_rate": 2e-05,
919
+ "loss": 0.0035,
920
+ "step": 1520
921
+ },
922
+ {
923
+ "epoch": 1020.0,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.0034,
926
+ "step": 1530
927
+ },
928
+ {
929
+ "epoch": 1026.67,
930
+ "learning_rate": 2e-05,
931
+ "loss": 0.0035,
932
+ "step": 1540
933
+ },
934
+ {
935
+ "epoch": 1033.33,
936
+ "learning_rate": 2e-05,
937
+ "loss": 0.0034,
938
+ "step": 1550
939
+ },
940
+ {
941
+ "epoch": 1040.0,
942
+ "learning_rate": 2e-05,
943
+ "loss": 0.0034,
944
+ "step": 1560
945
+ },
946
+ {
947
+ "epoch": 1046.67,
948
+ "learning_rate": 2e-05,
949
+ "loss": 0.0032,
950
+ "step": 1570
951
+ },
952
+ {
953
+ "epoch": 1053.33,
954
+ "learning_rate": 2e-05,
955
+ "loss": 0.0032,
956
+ "step": 1580
957
+ },
958
+ {
959
+ "epoch": 1060.0,
960
+ "learning_rate": 2e-05,
961
+ "loss": 0.0034,
962
+ "step": 1590
963
+ },
964
+ {
965
+ "epoch": 1066.67,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.0034,
968
+ "step": 1600
969
+ },
970
+ {
971
+ "epoch": 1073.33,
972
+ "learning_rate": 2e-05,
973
+ "loss": 0.0033,
974
+ "step": 1610
975
+ },
976
+ {
977
+ "epoch": 1080.0,
978
+ "learning_rate": 2e-05,
979
+ "loss": 0.0033,
980
+ "step": 1620
981
+ },
982
+ {
983
+ "epoch": 1086.67,
984
+ "learning_rate": 2e-05,
985
+ "loss": 0.0034,
986
+ "step": 1630
987
+ },
988
+ {
989
+ "epoch": 1093.33,
990
+ "learning_rate": 2e-05,
991
+ "loss": 0.0032,
992
+ "step": 1640
993
+ },
994
+ {
995
+ "epoch": 1100.0,
996
+ "learning_rate": 2e-05,
997
+ "loss": 0.0032,
998
+ "step": 1650
999
+ },
1000
+ {
1001
+ "epoch": 1106.67,
1002
+ "learning_rate": 2e-05,
1003
+ "loss": 0.0032,
1004
+ "step": 1660
1005
+ },
1006
+ {
1007
+ "epoch": 1113.33,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.0033,
1010
+ "step": 1670
1011
+ },
1012
+ {
1013
+ "epoch": 1120.0,
1014
+ "learning_rate": 2e-05,
1015
+ "loss": 0.0033,
1016
+ "step": 1680
1017
+ },
1018
+ {
1019
+ "epoch": 1126.67,
1020
+ "learning_rate": 2e-05,
1021
+ "loss": 0.0032,
1022
+ "step": 1690
1023
+ },
1024
+ {
1025
+ "epoch": 1133.33,
1026
+ "learning_rate": 2e-05,
1027
+ "loss": 0.0032,
1028
+ "step": 1700
1029
+ },
1030
+ {
1031
+ "epoch": 1140.0,
1032
+ "learning_rate": 2e-05,
1033
+ "loss": 0.0032,
1034
+ "step": 1710
1035
+ },
1036
+ {
1037
+ "epoch": 1146.67,
1038
+ "learning_rate": 2e-05,
1039
+ "loss": 0.0033,
1040
+ "step": 1720
1041
+ },
1042
+ {
1043
+ "epoch": 1153.33,
1044
+ "learning_rate": 2e-05,
1045
+ "loss": 0.0034,
1046
+ "step": 1730
1047
+ },
1048
+ {
1049
+ "epoch": 1160.0,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0034,
1052
+ "step": 1740
1053
+ },
1054
+ {
1055
+ "epoch": 1166.67,
1056
+ "learning_rate": 2e-05,
1057
+ "loss": 0.0032,
1058
+ "step": 1750
1059
+ },
1060
+ {
1061
+ "epoch": 1173.33,
1062
+ "learning_rate": 2e-05,
1063
+ "loss": 0.0033,
1064
+ "step": 1760
1065
+ },
1066
+ {
1067
+ "epoch": 1180.0,
1068
+ "learning_rate": 2e-05,
1069
+ "loss": 0.0032,
1070
+ "step": 1770
1071
+ },
1072
+ {
1073
+ "epoch": 1186.67,
1074
+ "learning_rate": 2e-05,
1075
+ "loss": 0.0032,
1076
+ "step": 1780
1077
+ },
1078
+ {
1079
+ "epoch": 1193.33,
1080
+ "learning_rate": 2e-05,
1081
+ "loss": 0.0032,
1082
+ "step": 1790
1083
+ },
1084
+ {
1085
+ "epoch": 1200.0,
1086
+ "learning_rate": 2e-05,
1087
+ "loss": 0.0032,
1088
+ "step": 1800
1089
+ },
1090
+ {
1091
+ "epoch": 1206.67,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.0032,
1094
+ "step": 1810
1095
+ },
1096
+ {
1097
+ "epoch": 1213.33,
1098
+ "learning_rate": 2e-05,
1099
+ "loss": 0.0043,
1100
+ "step": 1820
1101
+ },
1102
+ {
1103
+ "epoch": 1220.0,
1104
+ "learning_rate": 2e-05,
1105
+ "loss": 0.0034,
1106
+ "step": 1830
1107
+ },
1108
+ {
1109
+ "epoch": 1226.67,
1110
+ "learning_rate": 2e-05,
1111
+ "loss": 0.0032,
1112
+ "step": 1840
1113
+ },
1114
+ {
1115
+ "epoch": 1233.33,
1116
+ "learning_rate": 2e-05,
1117
+ "loss": 0.0034,
1118
+ "step": 1850
1119
+ },
1120
+ {
1121
+ "epoch": 1240.0,
1122
+ "learning_rate": 2e-05,
1123
+ "loss": 0.0063,
1124
+ "step": 1860
1125
+ },
1126
+ {
1127
+ "epoch": 1246.67,
1128
+ "learning_rate": 2e-05,
1129
+ "loss": 0.0032,
1130
+ "step": 1870
1131
+ },
1132
+ {
1133
+ "epoch": 1253.33,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 0.0061,
1136
+ "step": 1880
1137
+ },
1138
+ {
1139
+ "epoch": 1260.0,
1140
+ "learning_rate": 2e-05,
1141
+ "loss": 0.0071,
1142
+ "step": 1890
1143
+ },
1144
+ {
1145
+ "epoch": 1266.67,
1146
+ "learning_rate": 2e-05,
1147
+ "loss": 0.0055,
1148
+ "step": 1900
1149
+ },
1150
+ {
1151
+ "epoch": 1273.33,
1152
+ "learning_rate": 2e-05,
1153
+ "loss": 0.0053,
1154
+ "step": 1910
1155
+ },
1156
+ {
1157
+ "epoch": 1280.0,
1158
+ "learning_rate": 2e-05,
1159
+ "loss": 0.0043,
1160
+ "step": 1920
1161
+ },
1162
+ {
1163
+ "epoch": 1286.67,
1164
+ "learning_rate": 2e-05,
1165
+ "loss": 0.0042,
1166
+ "step": 1930
1167
+ },
1168
+ {
1169
+ "epoch": 1293.33,
1170
+ "learning_rate": 2e-05,
1171
+ "loss": 0.0039,
1172
+ "step": 1940
1173
+ },
1174
+ {
1175
+ "epoch": 1300.0,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 0.004,
1178
+ "step": 1950
1179
+ },
1180
+ {
1181
+ "epoch": 1306.67,
1182
+ "learning_rate": 2e-05,
1183
+ "loss": 0.0038,
1184
+ "step": 1960
1185
+ },
1186
+ {
1187
+ "epoch": 1313.33,
1188
+ "learning_rate": 2e-05,
1189
+ "loss": 0.004,
1190
+ "step": 1970
1191
+ },
1192
+ {
1193
+ "epoch": 1320.0,
1194
+ "learning_rate": 2e-05,
1195
+ "loss": 0.0038,
1196
+ "step": 1980
1197
+ },
1198
+ {
1199
+ "epoch": 1326.67,
1200
+ "learning_rate": 2e-05,
1201
+ "loss": 0.0036,
1202
+ "step": 1990
1203
+ },
1204
+ {
1205
+ "epoch": 1333.33,
1206
+ "learning_rate": 2e-05,
1207
+ "loss": 0.0036,
1208
+ "step": 2000
1209
+ }
1210
+ ],
1211
+ "max_steps": 2001,
1212
+ "num_train_epochs": 2001,
1213
+ "total_flos": 841518856273920.0,
1214
+ "trial_name": null,
1215
+ "trial_params": null
1216
+ }
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6f37d82e0ffda307f018bd024cb5411a96a38d758bc5f0c3bd5e051be3c5dc1
3
+ size 5563
checkpoint-2000/zero_to_fp32.py ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ '''Copyright The Microsoft DeepSpeed Team'''
3
+
4
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
5
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
6
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
7
+ # application.
8
+ #
9
+ # example: python zero_to_fp32.py . pytorch_model.bin
10
+
11
+ import argparse
12
+ import torch
13
+ import glob
14
+ import math
15
+ import os
16
+ import re
17
+ from collections import OrderedDict
18
+
19
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
20
+ # DeepSpeed data structures it has to be available in the current python environment.
21
+ from deepspeed.utils import logger
22
+ from deepspeed.checkpoint.constants import (DS_VERSION,
23
+ OPTIMIZER_STATE_DICT,
24
+ SINGLE_PARTITION_OF_FP32_GROUPS,
25
+ FP32_FLAT_GROUPS,
26
+ ZERO_STAGE,
27
+ PARTITION_COUNT,
28
+ PARAM_SHAPES,
29
+ BUFFER_NAMES)
30
+
31
+ debug = 0
32
+
33
+ # load to cpu
34
+ device = torch.device('cpu')
35
+
36
+
37
+ def atoi(text):
38
+ return int(text) if text.isdigit() else text
39
+
40
+
41
+ def natural_keys(text):
42
+ '''
43
+ alist.sort(key=natural_keys) sorts in human order
44
+ http://nedbatchelder.com/blog/200712/human_sorting.html
45
+ (See Toothy's implementation in the comments)
46
+ '''
47
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
48
+
49
+
50
+ def get_model_state_file(checkpoint_dir, zero_stage):
51
+ if not os.path.isdir(checkpoint_dir):
52
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
53
+
54
+ # there should be only one file
55
+ if zero_stage == 2:
56
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
57
+ elif zero_stage == 3:
58
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
59
+
60
+ if not os.path.exists(file):
61
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
62
+
63
+ return file
64
+
65
+
66
+ def get_optim_files(checkpoint_dir):
67
+ # XXX: need to test that this simple glob rule works for multi-node setup too
68
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
69
+ "*_optim_states.pt")),
70
+ key=natural_keys)
71
+
72
+ if len(optim_files) == 0:
73
+ raise FileNotFoundError(
74
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
75
+
76
+ return optim_files
77
+
78
+
79
+ def parse_model_state(file):
80
+ state_dict = torch.load(file, map_location=device)
81
+
82
+ if BUFFER_NAMES not in state_dict:
83
+ raise ValueError(f"{file} is not a model state checkpoint")
84
+ buffer_names = state_dict[BUFFER_NAMES]
85
+ if debug:
86
+ print("Found buffers:", buffer_names)
87
+
88
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
89
+ buffers = {
90
+ k: v.float()
91
+ for k,
92
+ v in state_dict["module"].items() if k in buffer_names
93
+ }
94
+ param_shapes = state_dict[PARAM_SHAPES]
95
+
96
+ ds_version = state_dict.get(DS_VERSION, None)
97
+
98
+ return buffers, param_shapes, ds_version
99
+
100
+
101
+ def parse_optim_states(files, ds_checkpoint_dir):
102
+
103
+ total_files = len(files)
104
+ state_dicts = []
105
+ for f in files:
106
+ state_dicts.append(torch.load(f, map_location=device))
107
+
108
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
109
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
110
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
111
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
112
+
113
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
114
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
115
+ # use the max of the partition_count to get the dp world_size.
116
+
117
+ if type(world_size) is list:
118
+ world_size = max(world_size)
119
+
120
+ if world_size != total_files:
121
+ raise ValueError(
122
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
123
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
124
+ )
125
+
126
+ # the groups are named differently in each stage
127
+ if zero_stage == 2:
128
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
129
+ elif zero_stage == 3:
130
+ fp32_groups_key = FP32_FLAT_GROUPS
131
+ else:
132
+ raise ValueError(f"unknown zero stage {zero_stage}")
133
+
134
+ if zero_stage == 2:
135
+ fp32_flat_groups = [
136
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
137
+ for i in range(len(state_dicts))
138
+ ]
139
+ elif zero_stage == 3:
140
+ # if there is more than one param group, there will be multiple flattened tensors - one
141
+ # flattened tensor per group - for simplicity merge them into a single tensor
142
+ #
143
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
144
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
145
+
146
+ fp32_flat_groups = [
147
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
148
+ 0) for i in range(len(state_dicts))
149
+ ]
150
+
151
+ return zero_stage, world_size, fp32_flat_groups
152
+
153
+
154
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
155
+ """
156
+ Returns fp32 state_dict reconstructed from ds checkpoint
157
+
158
+ Args:
159
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
160
+
161
+ """
162
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
163
+
164
+ optim_files = get_optim_files(ds_checkpoint_dir)
165
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
166
+ print(
167
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
168
+
169
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
170
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
171
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
172
+
173
+ if zero_stage == 2:
174
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
175
+ param_shapes,
176
+ fp32_flat_groups,
177
+ buffers)
178
+ elif zero_stage == 3:
179
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
180
+ param_shapes,
181
+ fp32_flat_groups,
182
+ buffers)
183
+
184
+
185
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
186
+ param_shapes,
187
+ fp32_flat_groups,
188
+ buffers):
189
+
190
+ # Reconstruction protocol:
191
+ #
192
+ # XXX: document this
193
+
194
+ if debug:
195
+ for i in range(world_size):
196
+ for j in range(len(fp32_flat_groups[0])):
197
+ print(
198
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
199
+
200
+ # XXX: memory usage doubles here (zero2)
201
+ num_param_groups = len(fp32_flat_groups[0])
202
+ merged_single_partition_of_fp32_groups = []
203
+ for i in range(num_param_groups):
204
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
205
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
206
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
207
+ avail_numel = sum([
208
+ full_single_fp32_vector.numel()
209
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
210
+ ])
211
+
212
+ if debug:
213
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
214
+ wanted_numel = sum(
215
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
216
+ # not asserting if there is a mismatch due to possible padding
217
+ print(f"Have {avail_numel} numels to process.")
218
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
219
+
220
+ state_dict = OrderedDict()
221
+
222
+ # buffers
223
+ state_dict.update(buffers)
224
+ if debug:
225
+ print(f"added {len(buffers)} buffers")
226
+
227
+ # params
228
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
229
+ # out-of-core computing solution
230
+ total_numel = 0
231
+ total_params = 0
232
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
233
+ offset = 0
234
+ avail_numel = full_single_fp32_vector.numel()
235
+ for name, shape in shapes.items():
236
+
237
+ unpartitioned_numel = shape.numel()
238
+ total_numel += unpartitioned_numel
239
+ total_params += 1
240
+
241
+ if debug:
242
+ print(
243
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
244
+ )
245
+ state_dict[name] = full_single_fp32_vector.narrow(
246
+ 0,
247
+ offset,
248
+ unpartitioned_numel).view(shape)
249
+ offset += unpartitioned_numel
250
+
251
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
252
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
253
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
254
+ # live optimizer object, so we are checking that the numbers are within the right range
255
+ align_to = 2 * world_size
256
+
257
+ def zero2_align(x):
258
+ return align_to * math.ceil(x / align_to)
259
+
260
+ if debug:
261
+ print(f"original offset={offset}, avail_numel={avail_numel}")
262
+
263
+ offset = zero2_align(offset)
264
+ avail_numel = zero2_align(avail_numel)
265
+
266
+ if debug:
267
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
268
+
269
+ # Sanity check
270
+ if offset != avail_numel:
271
+ raise ValueError(
272
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
273
+
274
+ print(
275
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
276
+ )
277
+
278
+ return state_dict
279
+
280
+
281
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
282
+ remainder = unpartitioned_numel % world_size
283
+ padding_numel = (world_size - remainder) if remainder else 0
284
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
285
+ return partitioned_numel, padding_numel
286
+
287
+
288
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
289
+ param_shapes,
290
+ fp32_flat_groups,
291
+ buffers):
292
+
293
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
294
+ # param, re-consolidating each param, while dealing with padding if any
295
+
296
+ avail_numel = fp32_flat_groups[0].numel() * world_size
297
+ # merge list of dicts, preserving order
298
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
299
+
300
+ if debug:
301
+ for i in range(world_size):
302
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
303
+
304
+ wanted_params = len(param_shapes)
305
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
306
+ # not asserting if there is a mismatch due to possible padding
307
+ print(f"Have {avail_numel} numels to process.")
308
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
309
+
310
+ state_dict = OrderedDict()
311
+
312
+ # buffers
313
+ state_dict.update(buffers)
314
+ if debug:
315
+ print(f"added {len(buffers)} buffers")
316
+
317
+ # params
318
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
319
+ # out-of-core computing solution
320
+ offset = 0
321
+ total_numel = 0
322
+ total_params = 0
323
+ for name, shape in param_shapes.items():
324
+
325
+ unpartitioned_numel = shape.numel()
326
+ total_numel += unpartitioned_numel
327
+ total_params += 1
328
+
329
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
330
+
331
+ if debug:
332
+ print(
333
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
334
+ )
335
+
336
+ # XXX: memory usage doubles here
337
+ state_dict[name] = torch.cat(
338
+ tuple(fp32_flat_groups[i].narrow(0,
339
+ offset,
340
+ partitioned_numel)
341
+ for i in range(world_size)),
342
+ 0).narrow(0,
343
+ 0,
344
+ unpartitioned_numel).view(shape)
345
+ offset += partitioned_numel
346
+
347
+ offset *= world_size
348
+
349
+ # Sanity check
350
+ if offset != avail_numel:
351
+ raise ValueError(
352
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
353
+
354
+ print(
355
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
356
+ )
357
+
358
+ return state_dict
359
+
360
+
361
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
362
+ """
363
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
364
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
365
+ via a model hub.
366
+
367
+ Args:
368
+ - ``checkpoint_dir``: path to the desired checkpoint folder
369
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
370
+
371
+ Returns:
372
+ - pytorch ``state_dict``
373
+
374
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
375
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
376
+ the checkpoint.
377
+
378
+ A typical usage might be ::
379
+
380
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
381
+ # do the training and checkpoint saving
382
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
383
+ model = model.cpu() # move to cpu
384
+ model.load_state_dict(state_dict)
385
+ # submit to model hub or save the model to share with others
386
+
387
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
388
+ application. i.e. you will need to re-initialize the deepspeed engine, since
389
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
390
+
391
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
392
+
393
+ """
394
+ if tag is None:
395
+ latest_path = os.path.join(checkpoint_dir, 'latest')
396
+ if os.path.isfile(latest_path):
397
+ with open(latest_path, 'r') as fd:
398
+ tag = fd.read().strip()
399
+ else:
400
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
401
+
402
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
403
+
404
+ if not os.path.isdir(ds_checkpoint_dir):
405
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
406
+
407
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
408
+
409
+
410
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
411
+ """
412
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
413
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
414
+
415
+ Args:
416
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
417
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
418
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
419
+ """
420
+
421
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
422
+ print(f"Saving fp32 state dict to {output_file}")
423
+ torch.save(state_dict, output_file)
424
+
425
+
426
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
427
+ """
428
+ 1. Put the provided model to cpu
429
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
430
+ 3. Load it into the provided model
431
+
432
+ Args:
433
+ - ``model``: the model object to update
434
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
435
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
436
+
437
+ Returns:
438
+ - ``model`: modified model
439
+
440
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
441
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
442
+ conveniently placed for you in the checkpoint folder.
443
+
444
+ A typical usage might be ::
445
+
446
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
447
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
448
+ # submit to model hub or save the model to share with others
449
+
450
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
451
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
452
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
453
+
454
+ """
455
+ logger.info(f"Extracting fp32 weights")
456
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
457
+
458
+ logger.info(f"Overwriting model with fp32 weights")
459
+ model = model.cpu()
460
+ model.load_state_dict(state_dict, strict=False)
461
+
462
+ return model
463
+
464
+
465
+ if __name__ == "__main__":
466
+
467
+ parser = argparse.ArgumentParser()
468
+ parser.add_argument(
469
+ "checkpoint_dir",
470
+ type=str,
471
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
472
+ parser.add_argument(
473
+ "output_file",
474
+ type=str,
475
+ help=
476
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
477
+ )
478
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
479
+ args = parser.parse_args()
480
+
481
+ debug = args.debug
482
+
483
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
flyte_training_config.json CHANGED
@@ -1 +1 @@
1
- {"base_model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps": 1500, "learning_rate": 2e-05, "weight_decay": 0.02, "warmup_ratio": 0.03, "lr_scheduler_type": "cosine", "batch_size": 16, "micro_batch_size": 1, "val_set_size": 0, "group_by_length": false, "instruction_key": "instruction", "input_key": "input", "output_key": "output", "device_map": "auto", "cache_dir": null, "optim": "adamw_torch", "model_max_length": 512, "debug_mode": false, "debug_train_data_size": 1024, "wandb_project": ""}
 
1
+ {"base_model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "data_path": "wikipedia", "data_name": "20220301.simple", "num_epochs": 1, "max_steps": 2001, "learning_rate": 2e-05, "weight_decay": 0.02, "warmup_ratio": 0.03, "lr_scheduler_type": "cosine", "batch_size": 16, "micro_batch_size": 1, "val_set_size": 0, "group_by_length": false, "instruction_key": "instruction", "input_key": "input", "output_key": "output", "device_map": "auto", "cache_dir": null, "optim": "adamw_torch", "model_max_length": 512, "debug_mode": false, "debug_train_data_size": 1024, "wandb_project": ""}
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9481ef4ff637f2e49e3f7aee08b56c685a6130dd015f5546e00a1bff515ff8b8
3
  size 5686106713
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ffb1344823c7e872b10d296a16b98a5712cc86b52b776238f0b801f54d28833
3
  size 5686106713
trainer_state.json CHANGED
@@ -1,88 +1,88 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 1000.0,
5
- "global_step": 1500,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
  "epoch": 6.67,
12
- "learning_rate": 1.0223707272628328e-05,
13
- "loss": 2.0543,
14
  "step": 10
15
  },
16
  {
17
  "epoch": 13.33,
18
- "learning_rate": 1.4885550540243259e-05,
19
- "loss": 1.4127,
20
  "step": 20
21
  },
22
  {
23
  "epoch": 20.0,
24
- "learning_rate": 1.73161496447939e-05,
25
- "loss": 0.5013,
26
  "step": 30
27
  },
28
  {
29
  "epoch": 26.67,
30
- "learning_rate": 1.897156851886858e-05,
31
- "loss": 0.1121,
32
  "step": 40
33
  },
34
  {
35
  "epoch": 33.33,
36
- "learning_rate": 2e-05,
37
- "loss": 0.0576,
38
  "step": 50
39
  },
40
  {
41
  "epoch": 40.0,
42
- "learning_rate": 2e-05,
43
- "loss": 0.039,
44
  "step": 60
45
  },
46
  {
47
  "epoch": 46.67,
48
  "learning_rate": 2e-05,
49
- "loss": 0.0296,
50
  "step": 70
51
  },
52
  {
53
  "epoch": 53.33,
54
  "learning_rate": 2e-05,
55
- "loss": 0.0221,
56
  "step": 80
57
  },
58
  {
59
  "epoch": 60.0,
60
  "learning_rate": 2e-05,
61
- "loss": 0.0173,
62
  "step": 90
63
  },
64
  {
65
  "epoch": 66.67,
66
  "learning_rate": 2e-05,
67
- "loss": 0.0134,
68
  "step": 100
69
  },
70
  {
71
  "epoch": 73.33,
72
  "learning_rate": 2e-05,
73
- "loss": 0.011,
74
  "step": 110
75
  },
76
  {
77
  "epoch": 80.0,
78
  "learning_rate": 2e-05,
79
- "loss": 0.0099,
80
  "step": 120
81
  },
82
  {
83
  "epoch": 86.67,
84
  "learning_rate": 2e-05,
85
- "loss": 0.0092,
86
  "step": 130
87
  },
88
  {
@@ -94,73 +94,73 @@
94
  {
95
  "epoch": 100.0,
96
  "learning_rate": 2e-05,
97
- "loss": 0.0072,
98
  "step": 150
99
  },
100
  {
101
  "epoch": 106.67,
102
  "learning_rate": 2e-05,
103
- "loss": 0.01,
104
  "step": 160
105
  },
106
  {
107
  "epoch": 113.33,
108
  "learning_rate": 2e-05,
109
- "loss": 0.0169,
110
  "step": 170
111
  },
112
  {
113
  "epoch": 120.0,
114
  "learning_rate": 2e-05,
115
- "loss": 0.0064,
116
  "step": 180
117
  },
118
  {
119
  "epoch": 126.67,
120
  "learning_rate": 2e-05,
121
- "loss": 0.0058,
122
  "step": 190
123
  },
124
  {
125
  "epoch": 133.33,
126
  "learning_rate": 2e-05,
127
- "loss": 0.0154,
128
  "step": 200
129
  },
130
  {
131
  "epoch": 140.0,
132
  "learning_rate": 2e-05,
133
- "loss": 0.0126,
134
  "step": 210
135
  },
136
  {
137
  "epoch": 146.67,
138
  "learning_rate": 2e-05,
139
- "loss": 0.0052,
140
  "step": 220
141
  },
142
  {
143
  "epoch": 153.33,
144
  "learning_rate": 2e-05,
145
- "loss": 0.0076,
146
  "step": 230
147
  },
148
  {
149
  "epoch": 160.0,
150
  "learning_rate": 2e-05,
151
- "loss": 0.006,
152
  "step": 240
153
  },
154
  {
155
  "epoch": 166.67,
156
  "learning_rate": 2e-05,
157
- "loss": 0.005,
158
  "step": 250
159
  },
160
  {
161
  "epoch": 173.33,
162
  "learning_rate": 2e-05,
163
- "loss": 0.0047,
164
  "step": 260
165
  },
166
  {
@@ -184,19 +184,19 @@
184
  {
185
  "epoch": 200.0,
186
  "learning_rate": 2e-05,
187
- "loss": 0.0038,
188
  "step": 300
189
  },
190
  {
191
  "epoch": 206.67,
192
  "learning_rate": 2e-05,
193
- "loss": 0.004,
194
  "step": 310
195
  },
196
  {
197
  "epoch": 213.33,
198
  "learning_rate": 2e-05,
199
- "loss": 0.0039,
200
  "step": 320
201
  },
202
  {
@@ -208,43 +208,43 @@
208
  {
209
  "epoch": 226.67,
210
  "learning_rate": 2e-05,
211
- "loss": 0.0042,
212
  "step": 340
213
  },
214
  {
215
  "epoch": 233.33,
216
  "learning_rate": 2e-05,
217
- "loss": 0.0041,
218
  "step": 350
219
  },
220
  {
221
  "epoch": 240.0,
222
  "learning_rate": 2e-05,
223
- "loss": 0.0039,
224
  "step": 360
225
  },
226
  {
227
  "epoch": 246.67,
228
  "learning_rate": 2e-05,
229
- "loss": 0.0037,
230
  "step": 370
231
  },
232
  {
233
  "epoch": 253.33,
234
  "learning_rate": 2e-05,
235
- "loss": 0.0039,
236
  "step": 380
237
  },
238
  {
239
  "epoch": 260.0,
240
  "learning_rate": 2e-05,
241
- "loss": 0.0037,
242
  "step": 390
243
  },
244
  {
245
  "epoch": 266.67,
246
  "learning_rate": 2e-05,
247
- "loss": 0.0036,
248
  "step": 400
249
  },
250
  {
@@ -262,25 +262,25 @@
262
  {
263
  "epoch": 286.67,
264
  "learning_rate": 2e-05,
265
- "loss": 0.0037,
266
  "step": 430
267
  },
268
  {
269
  "epoch": 293.33,
270
  "learning_rate": 2e-05,
271
- "loss": 0.0037,
272
  "step": 440
273
  },
274
  {
275
  "epoch": 300.0,
276
  "learning_rate": 2e-05,
277
- "loss": 0.0036,
278
  "step": 450
279
  },
280
  {
281
  "epoch": 306.67,
282
  "learning_rate": 2e-05,
283
- "loss": 0.0036,
284
  "step": 460
285
  },
286
  {
@@ -292,19 +292,19 @@
292
  {
293
  "epoch": 320.0,
294
  "learning_rate": 2e-05,
295
- "loss": 0.0035,
296
  "step": 480
297
  },
298
  {
299
  "epoch": 326.67,
300
  "learning_rate": 2e-05,
301
- "loss": 0.0036,
302
  "step": 490
303
  },
304
  {
305
  "epoch": 333.33,
306
  "learning_rate": 2e-05,
307
- "loss": 0.0034,
308
  "step": 500
309
  },
310
  {
@@ -316,205 +316,205 @@
316
  {
317
  "epoch": 346.67,
318
  "learning_rate": 2e-05,
319
- "loss": 0.0034,
320
  "step": 520
321
  },
322
  {
323
  "epoch": 353.33,
324
  "learning_rate": 2e-05,
325
- "loss": 0.0035,
326
  "step": 530
327
  },
328
  {
329
  "epoch": 360.0,
330
  "learning_rate": 2e-05,
331
- "loss": 0.0035,
332
  "step": 540
333
  },
334
  {
335
  "epoch": 366.67,
336
  "learning_rate": 2e-05,
337
- "loss": 0.0034,
338
  "step": 550
339
  },
340
  {
341
  "epoch": 373.33,
342
  "learning_rate": 2e-05,
343
- "loss": 0.0033,
344
  "step": 560
345
  },
346
  {
347
  "epoch": 380.0,
348
  "learning_rate": 2e-05,
349
- "loss": 0.0032,
350
  "step": 570
351
  },
352
  {
353
  "epoch": 386.67,
354
  "learning_rate": 2e-05,
355
- "loss": 0.0034,
356
  "step": 580
357
  },
358
  {
359
  "epoch": 393.33,
360
  "learning_rate": 2e-05,
361
- "loss": 0.0033,
362
  "step": 590
363
  },
364
  {
365
  "epoch": 400.0,
366
  "learning_rate": 2e-05,
367
- "loss": 0.0035,
368
  "step": 600
369
  },
370
  {
371
  "epoch": 406.67,
372
  "learning_rate": 2e-05,
373
- "loss": 0.0034,
374
  "step": 610
375
  },
376
  {
377
  "epoch": 413.33,
378
  "learning_rate": 2e-05,
379
- "loss": 0.0038,
380
  "step": 620
381
  },
382
  {
383
  "epoch": 420.0,
384
  "learning_rate": 2e-05,
385
- "loss": 0.0035,
386
  "step": 630
387
  },
388
  {
389
  "epoch": 426.67,
390
  "learning_rate": 2e-05,
391
- "loss": 0.0035,
392
  "step": 640
393
  },
394
  {
395
  "epoch": 433.33,
396
  "learning_rate": 2e-05,
397
- "loss": 0.0036,
398
  "step": 650
399
  },
400
  {
401
  "epoch": 440.0,
402
  "learning_rate": 2e-05,
403
- "loss": 0.0054,
404
  "step": 660
405
  },
406
  {
407
  "epoch": 446.67,
408
  "learning_rate": 2e-05,
409
- "loss": 0.0048,
410
  "step": 670
411
  },
412
  {
413
  "epoch": 453.33,
414
  "learning_rate": 2e-05,
415
- "loss": 0.0041,
416
  "step": 680
417
  },
418
  {
419
  "epoch": 460.0,
420
  "learning_rate": 2e-05,
421
- "loss": 0.004,
422
  "step": 690
423
  },
424
  {
425
  "epoch": 466.67,
426
  "learning_rate": 2e-05,
427
- "loss": 0.005,
428
  "step": 700
429
  },
430
  {
431
  "epoch": 473.33,
432
  "learning_rate": 2e-05,
433
- "loss": 0.0052,
434
  "step": 710
435
  },
436
  {
437
  "epoch": 480.0,
438
  "learning_rate": 2e-05,
439
- "loss": 0.0049,
440
  "step": 720
441
  },
442
  {
443
  "epoch": 486.67,
444
  "learning_rate": 2e-05,
445
- "loss": 0.0053,
446
  "step": 730
447
  },
448
  {
449
  "epoch": 493.33,
450
  "learning_rate": 2e-05,
451
- "loss": 0.0046,
452
  "step": 740
453
  },
454
  {
455
  "epoch": 500.0,
456
  "learning_rate": 2e-05,
457
- "loss": 0.0049,
458
  "step": 750
459
  },
460
  {
461
  "epoch": 506.67,
462
  "learning_rate": 2e-05,
463
- "loss": 0.0046,
464
  "step": 760
465
  },
466
  {
467
  "epoch": 513.33,
468
  "learning_rate": 2e-05,
469
- "loss": 0.0043,
470
  "step": 770
471
  },
472
  {
473
  "epoch": 520.0,
474
  "learning_rate": 2e-05,
475
- "loss": 0.0045,
476
  "step": 780
477
  },
478
  {
479
  "epoch": 526.67,
480
  "learning_rate": 2e-05,
481
- "loss": 0.0044,
482
  "step": 790
483
  },
484
  {
485
  "epoch": 533.33,
486
  "learning_rate": 2e-05,
487
- "loss": 0.0044,
488
  "step": 800
489
  },
490
  {
491
  "epoch": 540.0,
492
  "learning_rate": 2e-05,
493
- "loss": 0.0039,
494
  "step": 810
495
  },
496
  {
497
  "epoch": 546.67,
498
  "learning_rate": 2e-05,
499
- "loss": 0.0039,
500
  "step": 820
501
  },
502
  {
503
  "epoch": 553.33,
504
  "learning_rate": 2e-05,
505
- "loss": 0.0039,
506
  "step": 830
507
  },
508
  {
509
  "epoch": 560.0,
510
  "learning_rate": 2e-05,
511
- "loss": 0.0036,
512
  "step": 840
513
  },
514
  {
515
  "epoch": 566.67,
516
  "learning_rate": 2e-05,
517
- "loss": 0.0035,
518
  "step": 850
519
  },
520
  {
@@ -532,91 +532,91 @@
532
  {
533
  "epoch": 586.67,
534
  "learning_rate": 2e-05,
535
- "loss": 0.0033,
536
  "step": 880
537
  },
538
  {
539
  "epoch": 593.33,
540
  "learning_rate": 2e-05,
541
- "loss": 0.0035,
542
  "step": 890
543
  },
544
  {
545
  "epoch": 600.0,
546
  "learning_rate": 2e-05,
547
- "loss": 0.0037,
548
  "step": 900
549
  },
550
  {
551
  "epoch": 606.67,
552
  "learning_rate": 2e-05,
553
- "loss": 0.0047,
554
  "step": 910
555
  },
556
  {
557
  "epoch": 613.33,
558
  "learning_rate": 2e-05,
559
- "loss": 0.004,
560
  "step": 920
561
  },
562
  {
563
  "epoch": 620.0,
564
  "learning_rate": 2e-05,
565
- "loss": 0.004,
566
  "step": 930
567
  },
568
  {
569
  "epoch": 626.67,
570
  "learning_rate": 2e-05,
571
- "loss": 0.0036,
572
  "step": 940
573
  },
574
  {
575
  "epoch": 633.33,
576
  "learning_rate": 2e-05,
577
- "loss": 0.0037,
578
  "step": 950
579
  },
580
  {
581
  "epoch": 640.0,
582
  "learning_rate": 2e-05,
583
- "loss": 0.004,
584
  "step": 960
585
  },
586
  {
587
  "epoch": 646.67,
588
  "learning_rate": 2e-05,
589
- "loss": 0.0042,
590
  "step": 970
591
  },
592
  {
593
  "epoch": 653.33,
594
  "learning_rate": 2e-05,
595
- "loss": 0.0037,
596
  "step": 980
597
  },
598
  {
599
  "epoch": 660.0,
600
  "learning_rate": 2e-05,
601
- "loss": 0.0036,
602
  "step": 990
603
  },
604
  {
605
  "epoch": 666.67,
606
  "learning_rate": 2e-05,
607
- "loss": 0.0035,
608
  "step": 1000
609
  },
610
  {
611
  "epoch": 673.33,
612
  "learning_rate": 2e-05,
613
- "loss": 0.0036,
614
  "step": 1010
615
  },
616
  {
617
  "epoch": 680.0,
618
  "learning_rate": 2e-05,
619
- "loss": 0.0035,
620
  "step": 1020
621
  },
622
  {
@@ -628,7 +628,7 @@
628
  {
629
  "epoch": 693.33,
630
  "learning_rate": 2e-05,
631
- "loss": 0.0034,
632
  "step": 1040
633
  },
634
  {
@@ -646,280 +646,580 @@
646
  {
647
  "epoch": 713.33,
648
  "learning_rate": 2e-05,
649
- "loss": 0.0032,
650
  "step": 1070
651
  },
652
  {
653
  "epoch": 720.0,
654
  "learning_rate": 2e-05,
655
- "loss": 0.0032,
656
  "step": 1080
657
  },
658
  {
659
  "epoch": 726.67,
660
  "learning_rate": 2e-05,
661
- "loss": 0.0032,
662
  "step": 1090
663
  },
664
  {
665
  "epoch": 733.33,
666
  "learning_rate": 2e-05,
667
- "loss": 0.0032,
668
  "step": 1100
669
  },
670
  {
671
  "epoch": 740.0,
672
  "learning_rate": 2e-05,
673
- "loss": 0.0032,
674
  "step": 1110
675
  },
676
  {
677
  "epoch": 746.67,
678
  "learning_rate": 2e-05,
679
- "loss": 0.0031,
680
  "step": 1120
681
  },
682
  {
683
  "epoch": 753.33,
684
  "learning_rate": 2e-05,
685
- "loss": 0.0033,
686
  "step": 1130
687
  },
688
  {
689
  "epoch": 760.0,
690
  "learning_rate": 2e-05,
691
- "loss": 0.0033,
692
  "step": 1140
693
  },
694
  {
695
  "epoch": 766.67,
696
  "learning_rate": 2e-05,
697
- "loss": 0.0031,
698
  "step": 1150
699
  },
700
  {
701
  "epoch": 773.33,
702
  "learning_rate": 2e-05,
703
- "loss": 0.003,
704
  "step": 1160
705
  },
706
  {
707
  "epoch": 780.0,
708
  "learning_rate": 2e-05,
709
- "loss": 0.0032,
710
  "step": 1170
711
  },
712
  {
713
  "epoch": 786.67,
714
  "learning_rate": 2e-05,
715
- "loss": 0.0033,
716
  "step": 1180
717
  },
718
  {
719
  "epoch": 793.33,
720
  "learning_rate": 2e-05,
721
- "loss": 0.0031,
722
  "step": 1190
723
  },
724
  {
725
  "epoch": 800.0,
726
  "learning_rate": 2e-05,
727
- "loss": 0.0031,
728
  "step": 1200
729
  },
730
  {
731
  "epoch": 806.67,
732
  "learning_rate": 2e-05,
733
- "loss": 0.0032,
734
  "step": 1210
735
  },
736
  {
737
  "epoch": 813.33,
738
  "learning_rate": 2e-05,
739
- "loss": 0.0031,
740
  "step": 1220
741
  },
742
  {
743
  "epoch": 820.0,
744
  "learning_rate": 2e-05,
745
- "loss": 0.0033,
746
  "step": 1230
747
  },
748
  {
749
  "epoch": 826.67,
750
  "learning_rate": 2e-05,
751
- "loss": 0.0029,
752
  "step": 1240
753
  },
754
  {
755
  "epoch": 833.33,
756
  "learning_rate": 2e-05,
757
- "loss": 0.003,
758
  "step": 1250
759
  },
760
  {
761
  "epoch": 840.0,
762
  "learning_rate": 2e-05,
763
- "loss": 0.0031,
764
  "step": 1260
765
  },
766
  {
767
  "epoch": 846.67,
768
  "learning_rate": 2e-05,
769
- "loss": 0.0031,
770
  "step": 1270
771
  },
772
  {
773
  "epoch": 853.33,
774
  "learning_rate": 2e-05,
775
- "loss": 0.0032,
776
  "step": 1280
777
  },
778
  {
779
  "epoch": 860.0,
780
  "learning_rate": 2e-05,
781
- "loss": 0.0031,
782
  "step": 1290
783
  },
784
  {
785
  "epoch": 866.67,
786
  "learning_rate": 2e-05,
787
- "loss": 0.0029,
788
  "step": 1300
789
  },
790
  {
791
  "epoch": 873.33,
792
  "learning_rate": 2e-05,
793
- "loss": 0.0031,
794
  "step": 1310
795
  },
796
  {
797
  "epoch": 880.0,
798
  "learning_rate": 2e-05,
799
- "loss": 0.003,
800
  "step": 1320
801
  },
802
  {
803
  "epoch": 886.67,
804
  "learning_rate": 2e-05,
805
- "loss": 0.0032,
806
  "step": 1330
807
  },
808
  {
809
  "epoch": 893.33,
810
  "learning_rate": 2e-05,
811
- "loss": 0.0031,
812
  "step": 1340
813
  },
814
  {
815
  "epoch": 900.0,
816
  "learning_rate": 2e-05,
817
- "loss": 0.0031,
818
  "step": 1350
819
  },
820
  {
821
  "epoch": 906.67,
822
  "learning_rate": 2e-05,
823
- "loss": 0.0032,
824
  "step": 1360
825
  },
826
  {
827
  "epoch": 913.33,
828
  "learning_rate": 2e-05,
829
- "loss": 0.0031,
830
  "step": 1370
831
  },
832
  {
833
  "epoch": 920.0,
834
  "learning_rate": 2e-05,
835
- "loss": 0.0031,
836
  "step": 1380
837
  },
838
  {
839
  "epoch": 926.67,
840
  "learning_rate": 2e-05,
841
- "loss": 0.0031,
842
  "step": 1390
843
  },
844
  {
845
  "epoch": 933.33,
846
  "learning_rate": 2e-05,
847
- "loss": 0.0033,
848
  "step": 1400
849
  },
850
  {
851
  "epoch": 940.0,
852
  "learning_rate": 2e-05,
853
- "loss": 0.0032,
854
  "step": 1410
855
  },
856
  {
857
  "epoch": 946.67,
858
  "learning_rate": 2e-05,
859
- "loss": 0.0038,
860
  "step": 1420
861
  },
862
  {
863
  "epoch": 953.33,
864
  "learning_rate": 2e-05,
865
- "loss": 0.0044,
866
  "step": 1430
867
  },
868
  {
869
  "epoch": 960.0,
870
  "learning_rate": 2e-05,
871
- "loss": 0.0045,
872
  "step": 1440
873
  },
874
  {
875
  "epoch": 966.67,
876
  "learning_rate": 2e-05,
877
- "loss": 0.0049,
878
  "step": 1450
879
  },
880
  {
881
  "epoch": 973.33,
882
  "learning_rate": 2e-05,
883
- "loss": 0.005,
884
  "step": 1460
885
  },
886
  {
887
  "epoch": 980.0,
888
  "learning_rate": 2e-05,
889
- "loss": 0.0048,
890
  "step": 1470
891
  },
892
  {
893
  "epoch": 986.67,
894
  "learning_rate": 2e-05,
895
- "loss": 0.0051,
896
  "step": 1480
897
  },
898
  {
899
  "epoch": 993.33,
900
  "learning_rate": 2e-05,
901
- "loss": 0.0049,
902
  "step": 1490
903
  },
904
  {
905
  "epoch": 1000.0,
906
  "learning_rate": 2e-05,
907
- "loss": 0.005,
908
  "step": 1500
909
  },
910
  {
911
- "epoch": 1000.0,
912
- "step": 1500,
913
- "total_flos": 631132567633920.0,
914
- "train_loss": 0.032416117899119856,
915
- "train_runtime": 64000.2264,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916
  "train_samples_per_second": 3.0,
917
  "train_steps_per_second": 0.023
918
  }
919
  ],
920
- "max_steps": 1500,
921
- "num_train_epochs": 1500,
922
- "total_flos": 631132567633920.0,
923
  "trial_name": null,
924
  "trial_params": null
925
  }
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 1334.0,
5
+ "global_step": 2001,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
  "epoch": 6.67,
12
+ "learning_rate": 9.46713625058711e-06,
13
+ "loss": 2.0455,
14
  "step": 10
15
  },
16
  {
17
  "epoch": 13.33,
18
+ "learning_rate": 1.3783995508828243e-05,
19
+ "loss": 1.425,
20
  "step": 20
21
  },
22
  {
23
  "epoch": 20.0,
24
+ "learning_rate": 1.603472631319529e-05,
25
+ "loss": 0.5237,
26
  "step": 30
27
  },
28
  {
29
  "epoch": 26.67,
30
+ "learning_rate": 1.7567641489142956e-05,
31
+ "loss": 0.1184,
32
  "step": 40
33
  },
34
  {
35
  "epoch": 33.33,
36
+ "learning_rate": 1.8731528764550483e-05,
37
+ "loss": 0.0585,
38
  "step": 50
39
  },
40
  {
41
  "epoch": 40.0,
42
+ "learning_rate": 1.9670033192067303e-05,
43
+ "loss": 0.0411,
44
  "step": 60
45
  },
46
  {
47
  "epoch": 46.67,
48
  "learning_rate": 2e-05,
49
+ "loss": 0.0321,
50
  "step": 70
51
  },
52
  {
53
  "epoch": 53.33,
54
  "learning_rate": 2e-05,
55
+ "loss": 0.0232,
56
  "step": 80
57
  },
58
  {
59
  "epoch": 60.0,
60
  "learning_rate": 2e-05,
61
+ "loss": 0.0182,
62
  "step": 90
63
  },
64
  {
65
  "epoch": 66.67,
66
  "learning_rate": 2e-05,
67
+ "loss": 0.0137,
68
  "step": 100
69
  },
70
  {
71
  "epoch": 73.33,
72
  "learning_rate": 2e-05,
73
+ "loss": 0.0111,
74
  "step": 110
75
  },
76
  {
77
  "epoch": 80.0,
78
  "learning_rate": 2e-05,
79
+ "loss": 0.0096,
80
  "step": 120
81
  },
82
  {
83
  "epoch": 86.67,
84
  "learning_rate": 2e-05,
85
+ "loss": 0.0085,
86
  "step": 130
87
  },
88
  {
 
94
  {
95
  "epoch": 100.0,
96
  "learning_rate": 2e-05,
97
+ "loss": 0.007,
98
  "step": 150
99
  },
100
  {
101
  "epoch": 106.67,
102
  "learning_rate": 2e-05,
103
+ "loss": 0.0066,
104
  "step": 160
105
  },
106
  {
107
  "epoch": 113.33,
108
  "learning_rate": 2e-05,
109
+ "loss": 0.0061,
110
  "step": 170
111
  },
112
  {
113
  "epoch": 120.0,
114
  "learning_rate": 2e-05,
115
+ "loss": 0.0057,
116
  "step": 180
117
  },
118
  {
119
  "epoch": 126.67,
120
  "learning_rate": 2e-05,
121
+ "loss": 0.0054,
122
  "step": 190
123
  },
124
  {
125
  "epoch": 133.33,
126
  "learning_rate": 2e-05,
127
+ "loss": 0.0052,
128
  "step": 200
129
  },
130
  {
131
  "epoch": 140.0,
132
  "learning_rate": 2e-05,
133
+ "loss": 0.0049,
134
  "step": 210
135
  },
136
  {
137
  "epoch": 146.67,
138
  "learning_rate": 2e-05,
139
+ "loss": 0.0048,
140
  "step": 220
141
  },
142
  {
143
  "epoch": 153.33,
144
  "learning_rate": 2e-05,
145
+ "loss": 0.0048,
146
  "step": 230
147
  },
148
  {
149
  "epoch": 160.0,
150
  "learning_rate": 2e-05,
151
+ "loss": 0.0045,
152
  "step": 240
153
  },
154
  {
155
  "epoch": 166.67,
156
  "learning_rate": 2e-05,
157
+ "loss": 0.0046,
158
  "step": 250
159
  },
160
  {
161
  "epoch": 173.33,
162
  "learning_rate": 2e-05,
163
+ "loss": 0.0045,
164
  "step": 260
165
  },
166
  {
 
184
  {
185
  "epoch": 200.0,
186
  "learning_rate": 2e-05,
187
+ "loss": 0.0042,
188
  "step": 300
189
  },
190
  {
191
  "epoch": 206.67,
192
  "learning_rate": 2e-05,
193
+ "loss": 0.0041,
194
  "step": 310
195
  },
196
  {
197
  "epoch": 213.33,
198
  "learning_rate": 2e-05,
199
+ "loss": 0.0041,
200
  "step": 320
201
  },
202
  {
 
208
  {
209
  "epoch": 226.67,
210
  "learning_rate": 2e-05,
211
+ "loss": 0.004,
212
  "step": 340
213
  },
214
  {
215
  "epoch": 233.33,
216
  "learning_rate": 2e-05,
217
+ "loss": 0.004,
218
  "step": 350
219
  },
220
  {
221
  "epoch": 240.0,
222
  "learning_rate": 2e-05,
223
+ "loss": 0.0038,
224
  "step": 360
225
  },
226
  {
227
  "epoch": 246.67,
228
  "learning_rate": 2e-05,
229
+ "loss": 0.004,
230
  "step": 370
231
  },
232
  {
233
  "epoch": 253.33,
234
  "learning_rate": 2e-05,
235
+ "loss": 0.004,
236
  "step": 380
237
  },
238
  {
239
  "epoch": 260.0,
240
  "learning_rate": 2e-05,
241
+ "loss": 0.0041,
242
  "step": 390
243
  },
244
  {
245
  "epoch": 266.67,
246
  "learning_rate": 2e-05,
247
+ "loss": 0.0039,
248
  "step": 400
249
  },
250
  {
 
262
  {
263
  "epoch": 286.67,
264
  "learning_rate": 2e-05,
265
+ "loss": 0.0038,
266
  "step": 430
267
  },
268
  {
269
  "epoch": 293.33,
270
  "learning_rate": 2e-05,
271
+ "loss": 0.004,
272
  "step": 440
273
  },
274
  {
275
  "epoch": 300.0,
276
  "learning_rate": 2e-05,
277
+ "loss": 0.0039,
278
  "step": 450
279
  },
280
  {
281
  "epoch": 306.67,
282
  "learning_rate": 2e-05,
283
+ "loss": 0.0038,
284
  "step": 460
285
  },
286
  {
 
292
  {
293
  "epoch": 320.0,
294
  "learning_rate": 2e-05,
295
+ "loss": 0.0038,
296
  "step": 480
297
  },
298
  {
299
  "epoch": 326.67,
300
  "learning_rate": 2e-05,
301
+ "loss": 0.0038,
302
  "step": 490
303
  },
304
  {
305
  "epoch": 333.33,
306
  "learning_rate": 2e-05,
307
+ "loss": 0.0037,
308
  "step": 500
309
  },
310
  {
 
316
  {
317
  "epoch": 346.67,
318
  "learning_rate": 2e-05,
319
+ "loss": 0.004,
320
  "step": 520
321
  },
322
  {
323
  "epoch": 353.33,
324
  "learning_rate": 2e-05,
325
+ "loss": 0.0037,
326
  "step": 530
327
  },
328
  {
329
  "epoch": 360.0,
330
  "learning_rate": 2e-05,
331
+ "loss": 0.0039,
332
  "step": 540
333
  },
334
  {
335
  "epoch": 366.67,
336
  "learning_rate": 2e-05,
337
+ "loss": 0.0045,
338
  "step": 550
339
  },
340
  {
341
  "epoch": 373.33,
342
  "learning_rate": 2e-05,
343
+ "loss": 0.005,
344
  "step": 560
345
  },
346
  {
347
  "epoch": 380.0,
348
  "learning_rate": 2e-05,
349
+ "loss": 0.014,
350
  "step": 570
351
  },
352
  {
353
  "epoch": 386.67,
354
  "learning_rate": 2e-05,
355
+ "loss": 0.0149,
356
  "step": 580
357
  },
358
  {
359
  "epoch": 393.33,
360
  "learning_rate": 2e-05,
361
+ "loss": 0.0084,
362
  "step": 590
363
  },
364
  {
365
  "epoch": 400.0,
366
  "learning_rate": 2e-05,
367
+ "loss": 0.0072,
368
  "step": 600
369
  },
370
  {
371
  "epoch": 406.67,
372
  "learning_rate": 2e-05,
373
+ "loss": 0.0058,
374
  "step": 610
375
  },
376
  {
377
  "epoch": 413.33,
378
  "learning_rate": 2e-05,
379
+ "loss": 0.0053,
380
  "step": 620
381
  },
382
  {
383
  "epoch": 420.0,
384
  "learning_rate": 2e-05,
385
+ "loss": 0.0051,
386
  "step": 630
387
  },
388
  {
389
  "epoch": 426.67,
390
  "learning_rate": 2e-05,
391
+ "loss": 0.0047,
392
  "step": 640
393
  },
394
  {
395
  "epoch": 433.33,
396
  "learning_rate": 2e-05,
397
+ "loss": 0.0045,
398
  "step": 650
399
  },
400
  {
401
  "epoch": 440.0,
402
  "learning_rate": 2e-05,
403
+ "loss": 0.0043,
404
  "step": 660
405
  },
406
  {
407
  "epoch": 446.67,
408
  "learning_rate": 2e-05,
409
+ "loss": 0.0041,
410
  "step": 670
411
  },
412
  {
413
  "epoch": 453.33,
414
  "learning_rate": 2e-05,
415
+ "loss": 0.0039,
416
  "step": 680
417
  },
418
  {
419
  "epoch": 460.0,
420
  "learning_rate": 2e-05,
421
+ "loss": 0.0038,
422
  "step": 690
423
  },
424
  {
425
  "epoch": 466.67,
426
  "learning_rate": 2e-05,
427
+ "loss": 0.004,
428
  "step": 700
429
  },
430
  {
431
  "epoch": 473.33,
432
  "learning_rate": 2e-05,
433
+ "loss": 0.004,
434
  "step": 710
435
  },
436
  {
437
  "epoch": 480.0,
438
  "learning_rate": 2e-05,
439
+ "loss": 0.0036,
440
  "step": 720
441
  },
442
  {
443
  "epoch": 486.67,
444
  "learning_rate": 2e-05,
445
+ "loss": 0.0036,
446
  "step": 730
447
  },
448
  {
449
  "epoch": 493.33,
450
  "learning_rate": 2e-05,
451
+ "loss": 0.0037,
452
  "step": 740
453
  },
454
  {
455
  "epoch": 500.0,
456
  "learning_rate": 2e-05,
457
+ "loss": 0.0036,
458
  "step": 750
459
  },
460
  {
461
  "epoch": 506.67,
462
  "learning_rate": 2e-05,
463
+ "loss": 0.0034,
464
  "step": 760
465
  },
466
  {
467
  "epoch": 513.33,
468
  "learning_rate": 2e-05,
469
+ "loss": 0.0035,
470
  "step": 770
471
  },
472
  {
473
  "epoch": 520.0,
474
  "learning_rate": 2e-05,
475
+ "loss": 0.0035,
476
  "step": 780
477
  },
478
  {
479
  "epoch": 526.67,
480
  "learning_rate": 2e-05,
481
+ "loss": 0.0035,
482
  "step": 790
483
  },
484
  {
485
  "epoch": 533.33,
486
  "learning_rate": 2e-05,
487
+ "loss": 0.0034,
488
  "step": 800
489
  },
490
  {
491
  "epoch": 540.0,
492
  "learning_rate": 2e-05,
493
+ "loss": 0.0035,
494
  "step": 810
495
  },
496
  {
497
  "epoch": 546.67,
498
  "learning_rate": 2e-05,
499
+ "loss": 0.0034,
500
  "step": 820
501
  },
502
  {
503
  "epoch": 553.33,
504
  "learning_rate": 2e-05,
505
+ "loss": 0.0037,
506
  "step": 830
507
  },
508
  {
509
  "epoch": 560.0,
510
  "learning_rate": 2e-05,
511
+ "loss": 0.0034,
512
  "step": 840
513
  },
514
  {
515
  "epoch": 566.67,
516
  "learning_rate": 2e-05,
517
+ "loss": 0.0034,
518
  "step": 850
519
  },
520
  {
 
532
  {
533
  "epoch": 586.67,
534
  "learning_rate": 2e-05,
535
+ "loss": 0.0035,
536
  "step": 880
537
  },
538
  {
539
  "epoch": 593.33,
540
  "learning_rate": 2e-05,
541
+ "loss": 0.0033,
542
  "step": 890
543
  },
544
  {
545
  "epoch": 600.0,
546
  "learning_rate": 2e-05,
547
+ "loss": 0.0035,
548
  "step": 900
549
  },
550
  {
551
  "epoch": 606.67,
552
  "learning_rate": 2e-05,
553
+ "loss": 0.0035,
554
  "step": 910
555
  },
556
  {
557
  "epoch": 613.33,
558
  "learning_rate": 2e-05,
559
+ "loss": 0.0034,
560
  "step": 920
561
  },
562
  {
563
  "epoch": 620.0,
564
  "learning_rate": 2e-05,
565
+ "loss": 0.0033,
566
  "step": 930
567
  },
568
  {
569
  "epoch": 626.67,
570
  "learning_rate": 2e-05,
571
+ "loss": 0.0034,
572
  "step": 940
573
  },
574
  {
575
  "epoch": 633.33,
576
  "learning_rate": 2e-05,
577
+ "loss": 0.0035,
578
  "step": 950
579
  },
580
  {
581
  "epoch": 640.0,
582
  "learning_rate": 2e-05,
583
+ "loss": 0.0034,
584
  "step": 960
585
  },
586
  {
587
  "epoch": 646.67,
588
  "learning_rate": 2e-05,
589
+ "loss": 0.0035,
590
  "step": 970
591
  },
592
  {
593
  "epoch": 653.33,
594
  "learning_rate": 2e-05,
595
+ "loss": 0.0034,
596
  "step": 980
597
  },
598
  {
599
  "epoch": 660.0,
600
  "learning_rate": 2e-05,
601
+ "loss": 0.0035,
602
  "step": 990
603
  },
604
  {
605
  "epoch": 666.67,
606
  "learning_rate": 2e-05,
607
+ "loss": 0.0034,
608
  "step": 1000
609
  },
610
  {
611
  "epoch": 673.33,
612
  "learning_rate": 2e-05,
613
+ "loss": 0.0035,
614
  "step": 1010
615
  },
616
  {
617
  "epoch": 680.0,
618
  "learning_rate": 2e-05,
619
+ "loss": 0.0034,
620
  "step": 1020
621
  },
622
  {
 
628
  {
629
  "epoch": 693.33,
630
  "learning_rate": 2e-05,
631
+ "loss": 0.0033,
632
  "step": 1040
633
  },
634
  {
 
646
  {
647
  "epoch": 713.33,
648
  "learning_rate": 2e-05,
649
+ "loss": 0.0035,
650
  "step": 1070
651
  },
652
  {
653
  "epoch": 720.0,
654
  "learning_rate": 2e-05,
655
+ "loss": 0.0035,
656
  "step": 1080
657
  },
658
  {
659
  "epoch": 726.67,
660
  "learning_rate": 2e-05,
661
+ "loss": 0.0035,
662
  "step": 1090
663
  },
664
  {
665
  "epoch": 733.33,
666
  "learning_rate": 2e-05,
667
+ "loss": 0.0034,
668
  "step": 1100
669
  },
670
  {
671
  "epoch": 740.0,
672
  "learning_rate": 2e-05,
673
+ "loss": 0.0034,
674
  "step": 1110
675
  },
676
  {
677
  "epoch": 746.67,
678
  "learning_rate": 2e-05,
679
+ "loss": 0.0034,
680
  "step": 1120
681
  },
682
  {
683
  "epoch": 753.33,
684
  "learning_rate": 2e-05,
685
+ "loss": 0.0035,
686
  "step": 1130
687
  },
688
  {
689
  "epoch": 760.0,
690
  "learning_rate": 2e-05,
691
+ "loss": 0.0035,
692
  "step": 1140
693
  },
694
  {
695
  "epoch": 766.67,
696
  "learning_rate": 2e-05,
697
+ "loss": 0.0039,
698
  "step": 1150
699
  },
700
  {
701
  "epoch": 773.33,
702
  "learning_rate": 2e-05,
703
+ "loss": 0.0049,
704
  "step": 1160
705
  },
706
  {
707
  "epoch": 780.0,
708
  "learning_rate": 2e-05,
709
+ "loss": 0.0049,
710
  "step": 1170
711
  },
712
  {
713
  "epoch": 786.67,
714
  "learning_rate": 2e-05,
715
+ "loss": 0.0048,
716
  "step": 1180
717
  },
718
  {
719
  "epoch": 793.33,
720
  "learning_rate": 2e-05,
721
+ "loss": 0.0048,
722
  "step": 1190
723
  },
724
  {
725
  "epoch": 800.0,
726
  "learning_rate": 2e-05,
727
+ "loss": 0.0046,
728
  "step": 1200
729
  },
730
  {
731
  "epoch": 806.67,
732
  "learning_rate": 2e-05,
733
+ "loss": 0.0041,
734
  "step": 1210
735
  },
736
  {
737
  "epoch": 813.33,
738
  "learning_rate": 2e-05,
739
+ "loss": 0.0038,
740
  "step": 1220
741
  },
742
  {
743
  "epoch": 820.0,
744
  "learning_rate": 2e-05,
745
+ "loss": 0.0043,
746
  "step": 1230
747
  },
748
  {
749
  "epoch": 826.67,
750
  "learning_rate": 2e-05,
751
+ "loss": 0.0042,
752
  "step": 1240
753
  },
754
  {
755
  "epoch": 833.33,
756
  "learning_rate": 2e-05,
757
+ "loss": 0.004,
758
  "step": 1250
759
  },
760
  {
761
  "epoch": 840.0,
762
  "learning_rate": 2e-05,
763
+ "loss": 0.0037,
764
  "step": 1260
765
  },
766
  {
767
  "epoch": 846.67,
768
  "learning_rate": 2e-05,
769
+ "loss": 0.0043,
770
  "step": 1270
771
  },
772
  {
773
  "epoch": 853.33,
774
  "learning_rate": 2e-05,
775
+ "loss": 0.0037,
776
  "step": 1280
777
  },
778
  {
779
  "epoch": 860.0,
780
  "learning_rate": 2e-05,
781
+ "loss": 0.004,
782
  "step": 1290
783
  },
784
  {
785
  "epoch": 866.67,
786
  "learning_rate": 2e-05,
787
+ "loss": 0.004,
788
  "step": 1300
789
  },
790
  {
791
  "epoch": 873.33,
792
  "learning_rate": 2e-05,
793
+ "loss": 0.0051,
794
  "step": 1310
795
  },
796
  {
797
  "epoch": 880.0,
798
  "learning_rate": 2e-05,
799
+ "loss": 0.0127,
800
  "step": 1320
801
  },
802
  {
803
  "epoch": 886.67,
804
  "learning_rate": 2e-05,
805
+ "loss": 0.0082,
806
  "step": 1330
807
  },
808
  {
809
  "epoch": 893.33,
810
  "learning_rate": 2e-05,
811
+ "loss": 0.0193,
812
  "step": 1340
813
  },
814
  {
815
  "epoch": 900.0,
816
  "learning_rate": 2e-05,
817
+ "loss": 0.0072,
818
  "step": 1350
819
  },
820
  {
821
  "epoch": 906.67,
822
  "learning_rate": 2e-05,
823
+ "loss": 0.0055,
824
  "step": 1360
825
  },
826
  {
827
  "epoch": 913.33,
828
  "learning_rate": 2e-05,
829
+ "loss": 0.0052,
830
  "step": 1370
831
  },
832
  {
833
  "epoch": 920.0,
834
  "learning_rate": 2e-05,
835
+ "loss": 0.0045,
836
  "step": 1380
837
  },
838
  {
839
  "epoch": 926.67,
840
  "learning_rate": 2e-05,
841
+ "loss": 0.0042,
842
  "step": 1390
843
  },
844
  {
845
  "epoch": 933.33,
846
  "learning_rate": 2e-05,
847
+ "loss": 0.0042,
848
  "step": 1400
849
  },
850
  {
851
  "epoch": 940.0,
852
  "learning_rate": 2e-05,
853
+ "loss": 0.0037,
854
  "step": 1410
855
  },
856
  {
857
  "epoch": 946.67,
858
  "learning_rate": 2e-05,
859
+ "loss": 0.0037,
860
  "step": 1420
861
  },
862
  {
863
  "epoch": 953.33,
864
  "learning_rate": 2e-05,
865
+ "loss": 0.0038,
866
  "step": 1430
867
  },
868
  {
869
  "epoch": 960.0,
870
  "learning_rate": 2e-05,
871
+ "loss": 0.0036,
872
  "step": 1440
873
  },
874
  {
875
  "epoch": 966.67,
876
  "learning_rate": 2e-05,
877
+ "loss": 0.0037,
878
  "step": 1450
879
  },
880
  {
881
  "epoch": 973.33,
882
  "learning_rate": 2e-05,
883
+ "loss": 0.0035,
884
  "step": 1460
885
  },
886
  {
887
  "epoch": 980.0,
888
  "learning_rate": 2e-05,
889
+ "loss": 0.0037,
890
  "step": 1470
891
  },
892
  {
893
  "epoch": 986.67,
894
  "learning_rate": 2e-05,
895
+ "loss": 0.0035,
896
  "step": 1480
897
  },
898
  {
899
  "epoch": 993.33,
900
  "learning_rate": 2e-05,
901
+ "loss": 0.0034,
902
  "step": 1490
903
  },
904
  {
905
  "epoch": 1000.0,
906
  "learning_rate": 2e-05,
907
+ "loss": 0.0035,
908
  "step": 1500
909
  },
910
  {
911
+ "epoch": 1006.67,
912
+ "learning_rate": 2e-05,
913
+ "loss": 0.0035,
914
+ "step": 1510
915
+ },
916
+ {
917
+ "epoch": 1013.33,
918
+ "learning_rate": 2e-05,
919
+ "loss": 0.0035,
920
+ "step": 1520
921
+ },
922
+ {
923
+ "epoch": 1020.0,
924
+ "learning_rate": 2e-05,
925
+ "loss": 0.0034,
926
+ "step": 1530
927
+ },
928
+ {
929
+ "epoch": 1026.67,
930
+ "learning_rate": 2e-05,
931
+ "loss": 0.0035,
932
+ "step": 1540
933
+ },
934
+ {
935
+ "epoch": 1033.33,
936
+ "learning_rate": 2e-05,
937
+ "loss": 0.0034,
938
+ "step": 1550
939
+ },
940
+ {
941
+ "epoch": 1040.0,
942
+ "learning_rate": 2e-05,
943
+ "loss": 0.0034,
944
+ "step": 1560
945
+ },
946
+ {
947
+ "epoch": 1046.67,
948
+ "learning_rate": 2e-05,
949
+ "loss": 0.0032,
950
+ "step": 1570
951
+ },
952
+ {
953
+ "epoch": 1053.33,
954
+ "learning_rate": 2e-05,
955
+ "loss": 0.0032,
956
+ "step": 1580
957
+ },
958
+ {
959
+ "epoch": 1060.0,
960
+ "learning_rate": 2e-05,
961
+ "loss": 0.0034,
962
+ "step": 1590
963
+ },
964
+ {
965
+ "epoch": 1066.67,
966
+ "learning_rate": 2e-05,
967
+ "loss": 0.0034,
968
+ "step": 1600
969
+ },
970
+ {
971
+ "epoch": 1073.33,
972
+ "learning_rate": 2e-05,
973
+ "loss": 0.0033,
974
+ "step": 1610
975
+ },
976
+ {
977
+ "epoch": 1080.0,
978
+ "learning_rate": 2e-05,
979
+ "loss": 0.0033,
980
+ "step": 1620
981
+ },
982
+ {
983
+ "epoch": 1086.67,
984
+ "learning_rate": 2e-05,
985
+ "loss": 0.0034,
986
+ "step": 1630
987
+ },
988
+ {
989
+ "epoch": 1093.33,
990
+ "learning_rate": 2e-05,
991
+ "loss": 0.0032,
992
+ "step": 1640
993
+ },
994
+ {
995
+ "epoch": 1100.0,
996
+ "learning_rate": 2e-05,
997
+ "loss": 0.0032,
998
+ "step": 1650
999
+ },
1000
+ {
1001
+ "epoch": 1106.67,
1002
+ "learning_rate": 2e-05,
1003
+ "loss": 0.0032,
1004
+ "step": 1660
1005
+ },
1006
+ {
1007
+ "epoch": 1113.33,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 0.0033,
1010
+ "step": 1670
1011
+ },
1012
+ {
1013
+ "epoch": 1120.0,
1014
+ "learning_rate": 2e-05,
1015
+ "loss": 0.0033,
1016
+ "step": 1680
1017
+ },
1018
+ {
1019
+ "epoch": 1126.67,
1020
+ "learning_rate": 2e-05,
1021
+ "loss": 0.0032,
1022
+ "step": 1690
1023
+ },
1024
+ {
1025
+ "epoch": 1133.33,
1026
+ "learning_rate": 2e-05,
1027
+ "loss": 0.0032,
1028
+ "step": 1700
1029
+ },
1030
+ {
1031
+ "epoch": 1140.0,
1032
+ "learning_rate": 2e-05,
1033
+ "loss": 0.0032,
1034
+ "step": 1710
1035
+ },
1036
+ {
1037
+ "epoch": 1146.67,
1038
+ "learning_rate": 2e-05,
1039
+ "loss": 0.0033,
1040
+ "step": 1720
1041
+ },
1042
+ {
1043
+ "epoch": 1153.33,
1044
+ "learning_rate": 2e-05,
1045
+ "loss": 0.0034,
1046
+ "step": 1730
1047
+ },
1048
+ {
1049
+ "epoch": 1160.0,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 0.0034,
1052
+ "step": 1740
1053
+ },
1054
+ {
1055
+ "epoch": 1166.67,
1056
+ "learning_rate": 2e-05,
1057
+ "loss": 0.0032,
1058
+ "step": 1750
1059
+ },
1060
+ {
1061
+ "epoch": 1173.33,
1062
+ "learning_rate": 2e-05,
1063
+ "loss": 0.0033,
1064
+ "step": 1760
1065
+ },
1066
+ {
1067
+ "epoch": 1180.0,
1068
+ "learning_rate": 2e-05,
1069
+ "loss": 0.0032,
1070
+ "step": 1770
1071
+ },
1072
+ {
1073
+ "epoch": 1186.67,
1074
+ "learning_rate": 2e-05,
1075
+ "loss": 0.0032,
1076
+ "step": 1780
1077
+ },
1078
+ {
1079
+ "epoch": 1193.33,
1080
+ "learning_rate": 2e-05,
1081
+ "loss": 0.0032,
1082
+ "step": 1790
1083
+ },
1084
+ {
1085
+ "epoch": 1200.0,
1086
+ "learning_rate": 2e-05,
1087
+ "loss": 0.0032,
1088
+ "step": 1800
1089
+ },
1090
+ {
1091
+ "epoch": 1206.67,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 0.0032,
1094
+ "step": 1810
1095
+ },
1096
+ {
1097
+ "epoch": 1213.33,
1098
+ "learning_rate": 2e-05,
1099
+ "loss": 0.0043,
1100
+ "step": 1820
1101
+ },
1102
+ {
1103
+ "epoch": 1220.0,
1104
+ "learning_rate": 2e-05,
1105
+ "loss": 0.0034,
1106
+ "step": 1830
1107
+ },
1108
+ {
1109
+ "epoch": 1226.67,
1110
+ "learning_rate": 2e-05,
1111
+ "loss": 0.0032,
1112
+ "step": 1840
1113
+ },
1114
+ {
1115
+ "epoch": 1233.33,
1116
+ "learning_rate": 2e-05,
1117
+ "loss": 0.0034,
1118
+ "step": 1850
1119
+ },
1120
+ {
1121
+ "epoch": 1240.0,
1122
+ "learning_rate": 2e-05,
1123
+ "loss": 0.0063,
1124
+ "step": 1860
1125
+ },
1126
+ {
1127
+ "epoch": 1246.67,
1128
+ "learning_rate": 2e-05,
1129
+ "loss": 0.0032,
1130
+ "step": 1870
1131
+ },
1132
+ {
1133
+ "epoch": 1253.33,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 0.0061,
1136
+ "step": 1880
1137
+ },
1138
+ {
1139
+ "epoch": 1260.0,
1140
+ "learning_rate": 2e-05,
1141
+ "loss": 0.0071,
1142
+ "step": 1890
1143
+ },
1144
+ {
1145
+ "epoch": 1266.67,
1146
+ "learning_rate": 2e-05,
1147
+ "loss": 0.0055,
1148
+ "step": 1900
1149
+ },
1150
+ {
1151
+ "epoch": 1273.33,
1152
+ "learning_rate": 2e-05,
1153
+ "loss": 0.0053,
1154
+ "step": 1910
1155
+ },
1156
+ {
1157
+ "epoch": 1280.0,
1158
+ "learning_rate": 2e-05,
1159
+ "loss": 0.0043,
1160
+ "step": 1920
1161
+ },
1162
+ {
1163
+ "epoch": 1286.67,
1164
+ "learning_rate": 2e-05,
1165
+ "loss": 0.0042,
1166
+ "step": 1930
1167
+ },
1168
+ {
1169
+ "epoch": 1293.33,
1170
+ "learning_rate": 2e-05,
1171
+ "loss": 0.0039,
1172
+ "step": 1940
1173
+ },
1174
+ {
1175
+ "epoch": 1300.0,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 0.004,
1178
+ "step": 1950
1179
+ },
1180
+ {
1181
+ "epoch": 1306.67,
1182
+ "learning_rate": 2e-05,
1183
+ "loss": 0.0038,
1184
+ "step": 1960
1185
+ },
1186
+ {
1187
+ "epoch": 1313.33,
1188
+ "learning_rate": 2e-05,
1189
+ "loss": 0.004,
1190
+ "step": 1970
1191
+ },
1192
+ {
1193
+ "epoch": 1320.0,
1194
+ "learning_rate": 2e-05,
1195
+ "loss": 0.0038,
1196
+ "step": 1980
1197
+ },
1198
+ {
1199
+ "epoch": 1326.67,
1200
+ "learning_rate": 2e-05,
1201
+ "loss": 0.0036,
1202
+ "step": 1990
1203
+ },
1204
+ {
1205
+ "epoch": 1333.33,
1206
+ "learning_rate": 2e-05,
1207
+ "loss": 0.0036,
1208
+ "step": 2000
1209
+ },
1210
+ {
1211
+ "epoch": 1334.0,
1212
+ "step": 2001,
1213
+ "total_flos": 841939628851200.0,
1214
+ "train_loss": 0.02562973479824564,
1215
+ "train_runtime": 85372.5158,
1216
  "train_samples_per_second": 3.0,
1217
  "train_steps_per_second": 0.023
1218
  }
1219
  ],
1220
+ "max_steps": 2001,
1221
+ "num_train_epochs": 2001,
1222
+ "total_flos": 841939628851200.0,
1223
  "trial_name": null,
1224
  "trial_params": null
1225
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c4e2371bf98be78aa001aad3916f770787fe84501537792f54f2133de363db2
3
  size 5563
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6f37d82e0ffda307f018bd024cb5411a96a38d758bc5f0c3bd5e051be3c5dc1
3
  size 5563