nielsbantilan
commited on
Commit
•
fccfca7
1
Parent(s):
a371d23
Upload folder using huggingface_hub
Browse files- .gitattributes +8 -0
- flyte19klvulo/local_flytekit/cf21fa2a2d01e72e3915dc8f3c6e1b32/00000 +3 -0
- flyte7htre9gj/local_flytekit/50076b0566bf12946e1eb1d4be15e838/00000 +3 -0
- flytegwz7gead/local_flytekit/b377c904d20fc45d4ae0fe507ae85019/00000 +3 -0
- flyteh3d_ydsb/local_flytekit/3656a2bdc0dbe9fdb5a43b6df6e8db08/00000 +3 -0
- flytehp3ce2w5/local_flytekit/fbce013b721d69eb9b098cdac3d5c001/00000 +3 -0
- flytemk5qri4f/local_flytekit/9836b038dd943755068a02464454db5a/00000 +3 -0
- flytepxngzev1/local_flytekit/41e697b21bf163ce6a04ce166aca0549/00000 +3 -0
- flytex31ghl6k/local_flytekit/92c9a08444022269ca292e8c396bdd23/00000 +3 -0
- pytorch_model-00001-of-00003.bin +1 -1
- pytorch_model-00002-of-00003.bin +1 -1
- pytorch_model-00003-of-00003.bin +1 -1
- tmp1irzl5w5/_remote_module_non_scriptable.py +81 -0
- tmpcwd32mn0/_remote_module_non_scriptable.py +81 -0
- tmpefjtsdm5/_remote_module_non_scriptable.py +81 -0
- tmpftz082d8/__pycache__/_remote_module_non_scriptable.cpython-310.pyc +0 -0
- tmpftz082d8/_remote_module_non_scriptable.py +81 -0
- tmpj0u3x6ea/_remote_module_non_scriptable.py +81 -0
- tmpnmkfim5e/_remote_module_non_scriptable.py +81 -0
- trainer_state.json +108 -108
- training_args.bin +1 -1
.gitattributes
CHANGED
@@ -49,3 +49,11 @@ flyteraquk0cj/local_flytekit/776069c6405df68fd2755ce257e952ba/00000 filter=lfs d
|
|
49 |
flyterpqo54fv/local_flytekit/fd49b76dd3b1ffbc62b1efcef00fd674/00000 filter=lfs diff=lfs merge=lfs -text
|
50 |
flyteyao8jgm7/local_flytekit/67696dba0a579df645b5b2f987a9e4b9/00000 filter=lfs diff=lfs merge=lfs -text
|
51 |
flyteyfv3rs04/local_flytekit/65aa521dee1e8da3c795348937da23ed/00000 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
flyterpqo54fv/local_flytekit/fd49b76dd3b1ffbc62b1efcef00fd674/00000 filter=lfs diff=lfs merge=lfs -text
|
50 |
flyteyao8jgm7/local_flytekit/67696dba0a579df645b5b2f987a9e4b9/00000 filter=lfs diff=lfs merge=lfs -text
|
51 |
flyteyfv3rs04/local_flytekit/65aa521dee1e8da3c795348937da23ed/00000 filter=lfs diff=lfs merge=lfs -text
|
52 |
+
flyte19klvulo/local_flytekit/cf21fa2a2d01e72e3915dc8f3c6e1b32/00000 filter=lfs diff=lfs merge=lfs -text
|
53 |
+
flyte7htre9gj/local_flytekit/50076b0566bf12946e1eb1d4be15e838/00000 filter=lfs diff=lfs merge=lfs -text
|
54 |
+
flytegwz7gead/local_flytekit/b377c904d20fc45d4ae0fe507ae85019/00000 filter=lfs diff=lfs merge=lfs -text
|
55 |
+
flyteh3d_ydsb/local_flytekit/3656a2bdc0dbe9fdb5a43b6df6e8db08/00000 filter=lfs diff=lfs merge=lfs -text
|
56 |
+
flytehp3ce2w5/local_flytekit/fbce013b721d69eb9b098cdac3d5c001/00000 filter=lfs diff=lfs merge=lfs -text
|
57 |
+
flytemk5qri4f/local_flytekit/9836b038dd943755068a02464454db5a/00000 filter=lfs diff=lfs merge=lfs -text
|
58 |
+
flytepxngzev1/local_flytekit/41e697b21bf163ce6a04ce166aca0549/00000 filter=lfs diff=lfs merge=lfs -text
|
59 |
+
flytex31ghl6k/local_flytekit/92c9a08444022269ca292e8c396bdd23/00000 filter=lfs diff=lfs merge=lfs -text
|
flyte19klvulo/local_flytekit/cf21fa2a2d01e72e3915dc8f3c6e1b32/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyte7htre9gj/local_flytekit/50076b0566bf12946e1eb1d4be15e838/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flytegwz7gead/local_flytekit/b377c904d20fc45d4ae0fe507ae85019/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flyteh3d_ydsb/local_flytekit/3656a2bdc0dbe9fdb5a43b6df6e8db08/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flytehp3ce2w5/local_flytekit/fbce013b721d69eb9b098cdac3d5c001/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flytemk5qri4f/local_flytekit/9836b038dd943755068a02464454db5a/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flytepxngzev1/local_flytekit/41e697b21bf163ce6a04ce166aca0549/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
flytex31ghl6k/local_flytekit/92c9a08444022269ca292e8c396bdd23/00000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:067772915d011157436dc1ea88cb38756555e25be2d07616d1ee97dfac6e6535
|
3 |
+
size 133886409
|
pytorch_model-00001-of-00003.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9877982386
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48c13c72d53fa11536598e333f28f673f7e03707ec8a1cc409d323c7c766973b
|
3 |
size 9877982386
|
pytorch_model-00002-of-00003.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9894793766
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b5853196ea334e2c41c5c5ce5b6113886062a88420ef7c26fe49f1a00db3a66
|
3 |
size 9894793766
|
pytorch_model-00003-of-00003.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 7180985861
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5adfd4a60606ecf168e9ca0effc61162f1c4c7eade22e01a3fcf8704eacbf578
|
3 |
size 7180985861
|
tmp1irzl5w5/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmpcwd32mn0/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmpefjtsdm5/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmpftz082d8/__pycache__/_remote_module_non_scriptable.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
tmpftz082d8/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmpj0u3x6ea/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
tmpnmkfim5e/_remote_module_non_scriptable.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed.rpc as rpc
|
5 |
+
from torch import Tensor
|
6 |
+
from torch._jit_internal import Future
|
7 |
+
from torch.distributed.rpc import RRef
|
8 |
+
from typing import Tuple # pyre-ignore: unused import
|
9 |
+
|
10 |
+
|
11 |
+
module_interface_cls = None
|
12 |
+
|
13 |
+
|
14 |
+
def forward_async(self, *args, **kwargs):
|
15 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
+
kwargs = {**kwargs}
|
17 |
+
return rpc.rpc_async(
|
18 |
+
self.module_rref.owner(),
|
19 |
+
_remote_forward,
|
20 |
+
args,
|
21 |
+
kwargs,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def forward(self, *args, **kwargs):
|
26 |
+
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
+
kwargs = {**kwargs}
|
28 |
+
ret_fut = rpc.rpc_async(
|
29 |
+
self.module_rref.owner(),
|
30 |
+
_remote_forward,
|
31 |
+
args,
|
32 |
+
kwargs,
|
33 |
+
)
|
34 |
+
return ret_fut.wait()
|
35 |
+
|
36 |
+
|
37 |
+
_generated_methods = [
|
38 |
+
forward_async,
|
39 |
+
forward,
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def _remote_forward(
|
46 |
+
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
+
module = module_rref.local_value()
|
48 |
+
device = torch.device(device)
|
49 |
+
|
50 |
+
if device.type != "cuda":
|
51 |
+
return module.forward(*args, **kwargs)
|
52 |
+
|
53 |
+
# If the module is on a cuda device,
|
54 |
+
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
+
# Since torch script does not support generator expression,
|
56 |
+
# have to use concatenation instead of
|
57 |
+
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
+
args = (*args,)
|
59 |
+
out_args: Tuple[()] = ()
|
60 |
+
for arg in args:
|
61 |
+
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
+
out_args = out_args + arg
|
63 |
+
|
64 |
+
kwargs = {**kwargs}
|
65 |
+
for k, v in kwargs.items():
|
66 |
+
if isinstance(v, Tensor):
|
67 |
+
kwargs[k] = kwargs[k].to(device)
|
68 |
+
|
69 |
+
if is_device_map_set:
|
70 |
+
return module.forward(*out_args, **kwargs)
|
71 |
+
|
72 |
+
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
+
# so have to move any GPU tensor to CPU in the output.
|
74 |
+
# Since torch script does not support generator expression,
|
75 |
+
# have to use concatenation instead of
|
76 |
+
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
+
ret: Tuple[()] = ()
|
78 |
+
for i in module.forward(*out_args, **kwargs):
|
79 |
+
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
+
ret = ret + i
|
81 |
+
return ret
|
trainer_state.json
CHANGED
@@ -11,610 +11,610 @@
|
|
11 |
{
|
12 |
"epoch": 0.44,
|
13 |
"learning_rate": 0,
|
14 |
-
"loss": 1.
|
15 |
"step": 1
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.89,
|
19 |
"learning_rate": 0,
|
20 |
-
"loss": 1.
|
21 |
"step": 2
|
22 |
},
|
23 |
{
|
24 |
"epoch": 1.33,
|
25 |
"learning_rate": 0,
|
26 |
-
"loss": 1.
|
27 |
"step": 3
|
28 |
},
|
29 |
{
|
30 |
"epoch": 1.78,
|
31 |
"learning_rate": 0,
|
32 |
-
"loss": 1.
|
33 |
"step": 4
|
34 |
},
|
35 |
{
|
36 |
"epoch": 2.22,
|
37 |
"learning_rate": 0,
|
38 |
-
"loss": 1.
|
39 |
"step": 5
|
40 |
},
|
41 |
{
|
42 |
"epoch": 2.67,
|
43 |
"learning_rate": 0,
|
44 |
-
"loss": 1.
|
45 |
"step": 6
|
46 |
},
|
47 |
{
|
48 |
"epoch": 3.11,
|
49 |
"learning_rate": 0,
|
50 |
-
"loss": 1.
|
51 |
"step": 7
|
52 |
},
|
53 |
{
|
54 |
"epoch": 3.56,
|
55 |
"learning_rate": 0,
|
56 |
-
"loss": 1.
|
57 |
"step": 8
|
58 |
},
|
59 |
{
|
60 |
"epoch": 4.0,
|
61 |
"learning_rate": 0,
|
62 |
-
"loss": 1.
|
63 |
"step": 9
|
64 |
},
|
65 |
{
|
66 |
"epoch": 4.44,
|
67 |
"learning_rate": 0,
|
68 |
-
"loss": 1.
|
69 |
"step": 10
|
70 |
},
|
71 |
{
|
72 |
"epoch": 4.89,
|
73 |
"learning_rate": 0,
|
74 |
-
"loss": 1.
|
75 |
"step": 11
|
76 |
},
|
77 |
{
|
78 |
"epoch": 5.33,
|
79 |
"learning_rate": 0,
|
80 |
-
"loss": 1.
|
81 |
"step": 12
|
82 |
},
|
83 |
{
|
84 |
"epoch": 5.78,
|
85 |
"learning_rate": 0,
|
86 |
-
"loss": 1.
|
87 |
"step": 13
|
88 |
},
|
89 |
{
|
90 |
"epoch": 6.22,
|
91 |
"learning_rate": 0,
|
92 |
-
"loss": 1.
|
93 |
"step": 14
|
94 |
},
|
95 |
{
|
96 |
"epoch": 6.67,
|
97 |
"learning_rate": 0,
|
98 |
-
"loss": 1.
|
99 |
"step": 15
|
100 |
},
|
101 |
{
|
102 |
"epoch": 7.11,
|
103 |
-
"learning_rate": 0
|
104 |
-
"loss": 1.
|
105 |
"step": 16
|
106 |
},
|
107 |
{
|
108 |
"epoch": 7.56,
|
109 |
-
"learning_rate":
|
110 |
-
"loss": 1.
|
111 |
"step": 17
|
112 |
},
|
113 |
{
|
114 |
"epoch": 8.0,
|
115 |
-
"learning_rate":
|
116 |
-
"loss": 1.
|
117 |
"step": 18
|
118 |
},
|
119 |
{
|
120 |
"epoch": 8.44,
|
121 |
"learning_rate": 2e-05,
|
122 |
-
"loss": 1.
|
123 |
"step": 19
|
124 |
},
|
125 |
{
|
126 |
"epoch": 8.89,
|
127 |
"learning_rate": 2e-05,
|
128 |
-
"loss": 1.
|
129 |
"step": 20
|
130 |
},
|
131 |
{
|
132 |
"epoch": 9.33,
|
133 |
"learning_rate": 2e-05,
|
134 |
-
"loss": 1.
|
135 |
"step": 21
|
136 |
},
|
137 |
{
|
138 |
"epoch": 9.78,
|
139 |
"learning_rate": 2e-05,
|
140 |
-
"loss": 1.
|
141 |
"step": 22
|
142 |
},
|
143 |
{
|
144 |
"epoch": 10.22,
|
145 |
"learning_rate": 2e-05,
|
146 |
-
"loss": 1.
|
147 |
"step": 23
|
148 |
},
|
149 |
{
|
150 |
"epoch": 10.67,
|
151 |
"learning_rate": 2e-05,
|
152 |
-
"loss":
|
153 |
"step": 24
|
154 |
},
|
155 |
{
|
156 |
"epoch": 11.11,
|
157 |
"learning_rate": 2e-05,
|
158 |
-
"loss": 0.
|
159 |
"step": 25
|
160 |
},
|
161 |
{
|
162 |
"epoch": 11.56,
|
163 |
"learning_rate": 2e-05,
|
164 |
-
"loss": 0.
|
165 |
"step": 26
|
166 |
},
|
167 |
{
|
168 |
"epoch": 12.0,
|
169 |
"learning_rate": 2e-05,
|
170 |
-
"loss": 0.
|
171 |
"step": 27
|
172 |
},
|
173 |
{
|
174 |
"epoch": 12.44,
|
175 |
"learning_rate": 2e-05,
|
176 |
-
"loss": 0.
|
177 |
"step": 28
|
178 |
},
|
179 |
{
|
180 |
"epoch": 12.89,
|
181 |
"learning_rate": 2e-05,
|
182 |
-
"loss": 0.
|
183 |
"step": 29
|
184 |
},
|
185 |
{
|
186 |
"epoch": 13.33,
|
187 |
"learning_rate": 2e-05,
|
188 |
-
"loss": 0.
|
189 |
"step": 30
|
190 |
},
|
191 |
{
|
192 |
"epoch": 13.78,
|
193 |
"learning_rate": 2e-05,
|
194 |
-
"loss": 0.
|
195 |
"step": 31
|
196 |
},
|
197 |
{
|
198 |
"epoch": 14.22,
|
199 |
"learning_rate": 2e-05,
|
200 |
-
"loss": 0.
|
201 |
"step": 32
|
202 |
},
|
203 |
{
|
204 |
"epoch": 14.67,
|
205 |
"learning_rate": 2e-05,
|
206 |
-
"loss": 0.
|
207 |
"step": 33
|
208 |
},
|
209 |
{
|
210 |
"epoch": 15.11,
|
211 |
"learning_rate": 2e-05,
|
212 |
-
"loss": 0.
|
213 |
"step": 34
|
214 |
},
|
215 |
{
|
216 |
"epoch": 15.56,
|
217 |
"learning_rate": 2e-05,
|
218 |
-
"loss": 0.
|
219 |
"step": 35
|
220 |
},
|
221 |
{
|
222 |
"epoch": 16.0,
|
223 |
"learning_rate": 2e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 36
|
226 |
},
|
227 |
{
|
228 |
"epoch": 16.44,
|
229 |
"learning_rate": 2e-05,
|
230 |
-
"loss": 0.
|
231 |
"step": 37
|
232 |
},
|
233 |
{
|
234 |
"epoch": 16.89,
|
235 |
"learning_rate": 2e-05,
|
236 |
-
"loss": 0.
|
237 |
"step": 38
|
238 |
},
|
239 |
{
|
240 |
"epoch": 17.33,
|
241 |
"learning_rate": 2e-05,
|
242 |
-
"loss": 0.
|
243 |
"step": 39
|
244 |
},
|
245 |
{
|
246 |
"epoch": 17.78,
|
247 |
"learning_rate": 2e-05,
|
248 |
-
"loss": 0.
|
249 |
"step": 40
|
250 |
},
|
251 |
{
|
252 |
"epoch": 18.22,
|
253 |
"learning_rate": 2e-05,
|
254 |
-
"loss": 0.
|
255 |
"step": 41
|
256 |
},
|
257 |
{
|
258 |
"epoch": 18.67,
|
259 |
"learning_rate": 2e-05,
|
260 |
-
"loss": 0.
|
261 |
"step": 42
|
262 |
},
|
263 |
{
|
264 |
"epoch": 19.11,
|
265 |
"learning_rate": 2e-05,
|
266 |
-
"loss": 0.
|
267 |
"step": 43
|
268 |
},
|
269 |
{
|
270 |
"epoch": 19.56,
|
271 |
"learning_rate": 2e-05,
|
272 |
-
"loss": 0.
|
273 |
"step": 44
|
274 |
},
|
275 |
{
|
276 |
"epoch": 20.0,
|
277 |
"learning_rate": 2e-05,
|
278 |
-
"loss": 0.
|
279 |
"step": 45
|
280 |
},
|
281 |
{
|
282 |
"epoch": 20.44,
|
283 |
"learning_rate": 2e-05,
|
284 |
-
"loss": 0.
|
285 |
"step": 46
|
286 |
},
|
287 |
{
|
288 |
"epoch": 20.89,
|
289 |
"learning_rate": 2e-05,
|
290 |
-
"loss": 0.
|
291 |
"step": 47
|
292 |
},
|
293 |
{
|
294 |
"epoch": 21.33,
|
295 |
"learning_rate": 2e-05,
|
296 |
-
"loss": 0.
|
297 |
"step": 48
|
298 |
},
|
299 |
{
|
300 |
"epoch": 21.78,
|
301 |
"learning_rate": 2e-05,
|
302 |
-
"loss": 0.
|
303 |
"step": 49
|
304 |
},
|
305 |
{
|
306 |
"epoch": 22.22,
|
307 |
"learning_rate": 2e-05,
|
308 |
-
"loss": 0.
|
309 |
"step": 50
|
310 |
},
|
311 |
{
|
312 |
"epoch": 22.67,
|
313 |
"learning_rate": 2e-05,
|
314 |
-
"loss": 0.
|
315 |
"step": 51
|
316 |
},
|
317 |
{
|
318 |
"epoch": 23.11,
|
319 |
"learning_rate": 2e-05,
|
320 |
-
"loss": 0.
|
321 |
"step": 52
|
322 |
},
|
323 |
{
|
324 |
"epoch": 23.56,
|
325 |
"learning_rate": 2e-05,
|
326 |
-
"loss": 0.
|
327 |
"step": 53
|
328 |
},
|
329 |
{
|
330 |
"epoch": 24.0,
|
331 |
"learning_rate": 2e-05,
|
332 |
-
"loss": 0.
|
333 |
"step": 54
|
334 |
},
|
335 |
{
|
336 |
"epoch": 24.44,
|
337 |
"learning_rate": 2e-05,
|
338 |
-
"loss": 0.
|
339 |
"step": 55
|
340 |
},
|
341 |
{
|
342 |
"epoch": 24.89,
|
343 |
"learning_rate": 2e-05,
|
344 |
-
"loss": 0.
|
345 |
"step": 56
|
346 |
},
|
347 |
{
|
348 |
"epoch": 25.33,
|
349 |
"learning_rate": 2e-05,
|
350 |
-
"loss": 0.
|
351 |
"step": 57
|
352 |
},
|
353 |
{
|
354 |
"epoch": 25.78,
|
355 |
"learning_rate": 2e-05,
|
356 |
-
"loss": 0.
|
357 |
"step": 58
|
358 |
},
|
359 |
{
|
360 |
"epoch": 26.22,
|
361 |
"learning_rate": 2e-05,
|
362 |
-
"loss": 0.
|
363 |
"step": 59
|
364 |
},
|
365 |
{
|
366 |
"epoch": 26.67,
|
367 |
"learning_rate": 2e-05,
|
368 |
-
"loss": 0.
|
369 |
"step": 60
|
370 |
},
|
371 |
{
|
372 |
"epoch": 27.11,
|
373 |
"learning_rate": 2e-05,
|
374 |
-
"loss": 0.
|
375 |
"step": 61
|
376 |
},
|
377 |
{
|
378 |
"epoch": 27.56,
|
379 |
"learning_rate": 2e-05,
|
380 |
-
"loss": 0.
|
381 |
"step": 62
|
382 |
},
|
383 |
{
|
384 |
"epoch": 28.0,
|
385 |
"learning_rate": 2e-05,
|
386 |
-
"loss": 0.
|
387 |
"step": 63
|
388 |
},
|
389 |
{
|
390 |
"epoch": 28.44,
|
391 |
"learning_rate": 2e-05,
|
392 |
-
"loss": 0.
|
393 |
"step": 64
|
394 |
},
|
395 |
{
|
396 |
"epoch": 28.89,
|
397 |
"learning_rate": 2e-05,
|
398 |
-
"loss": 0.
|
399 |
"step": 65
|
400 |
},
|
401 |
{
|
402 |
"epoch": 29.33,
|
403 |
"learning_rate": 2e-05,
|
404 |
-
"loss": 0.
|
405 |
"step": 66
|
406 |
},
|
407 |
{
|
408 |
"epoch": 29.78,
|
409 |
"learning_rate": 2e-05,
|
410 |
-
"loss": 0.
|
411 |
"step": 67
|
412 |
},
|
413 |
{
|
414 |
"epoch": 30.22,
|
415 |
"learning_rate": 2e-05,
|
416 |
-
"loss": 0.
|
417 |
"step": 68
|
418 |
},
|
419 |
{
|
420 |
"epoch": 30.67,
|
421 |
"learning_rate": 2e-05,
|
422 |
-
"loss": 0.
|
423 |
"step": 69
|
424 |
},
|
425 |
{
|
426 |
"epoch": 31.11,
|
427 |
"learning_rate": 2e-05,
|
428 |
-
"loss": 0.
|
429 |
"step": 70
|
430 |
},
|
431 |
{
|
432 |
"epoch": 31.56,
|
433 |
"learning_rate": 2e-05,
|
434 |
-
"loss": 0.
|
435 |
"step": 71
|
436 |
},
|
437 |
{
|
438 |
"epoch": 32.0,
|
439 |
"learning_rate": 2e-05,
|
440 |
-
"loss": 0.
|
441 |
"step": 72
|
442 |
},
|
443 |
{
|
444 |
"epoch": 32.44,
|
445 |
"learning_rate": 2e-05,
|
446 |
-
"loss": 0.
|
447 |
"step": 73
|
448 |
},
|
449 |
{
|
450 |
"epoch": 32.89,
|
451 |
"learning_rate": 2e-05,
|
452 |
-
"loss": 0.
|
453 |
"step": 74
|
454 |
},
|
455 |
{
|
456 |
"epoch": 33.33,
|
457 |
"learning_rate": 2e-05,
|
458 |
-
"loss": 0.
|
459 |
"step": 75
|
460 |
},
|
461 |
{
|
462 |
"epoch": 33.78,
|
463 |
"learning_rate": 2e-05,
|
464 |
-
"loss": 0.
|
465 |
"step": 76
|
466 |
},
|
467 |
{
|
468 |
"epoch": 34.22,
|
469 |
"learning_rate": 2e-05,
|
470 |
-
"loss": 0.
|
471 |
"step": 77
|
472 |
},
|
473 |
{
|
474 |
"epoch": 34.67,
|
475 |
"learning_rate": 2e-05,
|
476 |
-
"loss": 0.
|
477 |
"step": 78
|
478 |
},
|
479 |
{
|
480 |
"epoch": 35.11,
|
481 |
"learning_rate": 2e-05,
|
482 |
-
"loss": 0.
|
483 |
"step": 79
|
484 |
},
|
485 |
{
|
486 |
"epoch": 35.56,
|
487 |
"learning_rate": 2e-05,
|
488 |
-
"loss": 0.
|
489 |
"step": 80
|
490 |
},
|
491 |
{
|
492 |
"epoch": 36.0,
|
493 |
"learning_rate": 2e-05,
|
494 |
-
"loss": 0.
|
495 |
"step": 81
|
496 |
},
|
497 |
{
|
498 |
"epoch": 36.44,
|
499 |
"learning_rate": 2e-05,
|
500 |
-
"loss": 0.
|
501 |
"step": 82
|
502 |
},
|
503 |
{
|
504 |
"epoch": 36.89,
|
505 |
"learning_rate": 2e-05,
|
506 |
-
"loss": 0.
|
507 |
"step": 83
|
508 |
},
|
509 |
{
|
510 |
"epoch": 37.33,
|
511 |
"learning_rate": 2e-05,
|
512 |
-
"loss": 0.
|
513 |
"step": 84
|
514 |
},
|
515 |
{
|
516 |
"epoch": 37.78,
|
517 |
"learning_rate": 2e-05,
|
518 |
-
"loss": 0.
|
519 |
"step": 85
|
520 |
},
|
521 |
{
|
522 |
"epoch": 38.22,
|
523 |
"learning_rate": 2e-05,
|
524 |
-
"loss": 0.
|
525 |
"step": 86
|
526 |
},
|
527 |
{
|
528 |
"epoch": 38.67,
|
529 |
"learning_rate": 2e-05,
|
530 |
-
"loss": 0.
|
531 |
"step": 87
|
532 |
},
|
533 |
{
|
534 |
"epoch": 39.11,
|
535 |
"learning_rate": 2e-05,
|
536 |
-
"loss": 0.
|
537 |
"step": 88
|
538 |
},
|
539 |
{
|
540 |
"epoch": 39.56,
|
541 |
"learning_rate": 2e-05,
|
542 |
-
"loss": 0.
|
543 |
"step": 89
|
544 |
},
|
545 |
{
|
546 |
"epoch": 40.0,
|
547 |
"learning_rate": 2e-05,
|
548 |
-
"loss": 0.
|
549 |
"step": 90
|
550 |
},
|
551 |
{
|
552 |
"epoch": 40.44,
|
553 |
"learning_rate": 2e-05,
|
554 |
-
"loss": 0.
|
555 |
"step": 91
|
556 |
},
|
557 |
{
|
558 |
"epoch": 40.89,
|
559 |
"learning_rate": 2e-05,
|
560 |
-
"loss": 0.
|
561 |
"step": 92
|
562 |
},
|
563 |
{
|
564 |
"epoch": 41.33,
|
565 |
"learning_rate": 2e-05,
|
566 |
-
"loss": 0.
|
567 |
"step": 93
|
568 |
},
|
569 |
{
|
570 |
"epoch": 41.78,
|
571 |
"learning_rate": 2e-05,
|
572 |
-
"loss": 0.
|
573 |
"step": 94
|
574 |
},
|
575 |
{
|
576 |
"epoch": 42.22,
|
577 |
"learning_rate": 2e-05,
|
578 |
-
"loss": 0.
|
579 |
"step": 95
|
580 |
},
|
581 |
{
|
582 |
"epoch": 42.67,
|
583 |
"learning_rate": 2e-05,
|
584 |
-
"loss": 0.
|
585 |
"step": 96
|
586 |
},
|
587 |
{
|
588 |
"epoch": 43.11,
|
589 |
"learning_rate": 2e-05,
|
590 |
-
"loss": 0.
|
591 |
"step": 97
|
592 |
},
|
593 |
{
|
594 |
"epoch": 43.56,
|
595 |
"learning_rate": 2e-05,
|
596 |
-
"loss": 0.
|
597 |
"step": 98
|
598 |
},
|
599 |
{
|
600 |
"epoch": 44.0,
|
601 |
"learning_rate": 2e-05,
|
602 |
-
"loss": 0.
|
603 |
"step": 99
|
604 |
},
|
605 |
{
|
606 |
"epoch": 44.44,
|
607 |
"learning_rate": 2e-05,
|
608 |
-
"loss": 0.
|
609 |
"step": 100
|
610 |
},
|
611 |
{
|
612 |
"epoch": 44.44,
|
613 |
"step": 100,
|
614 |
-
"total_flos":
|
615 |
-
"train_loss": 0.
|
616 |
-
"train_runtime":
|
617 |
-
"train_samples_per_second": 0.
|
618 |
"train_steps_per_second": 0.01
|
619 |
}
|
620 |
],
|
@@ -622,7 +622,7 @@
|
|
622 |
"max_steps": 100,
|
623 |
"num_train_epochs": 50,
|
624 |
"save_steps": 200,
|
625 |
-
"total_flos":
|
626 |
"trial_name": null,
|
627 |
"trial_params": null
|
628 |
}
|
|
|
11 |
{
|
12 |
"epoch": 0.44,
|
13 |
"learning_rate": 0,
|
14 |
+
"loss": 1.6723,
|
15 |
"step": 1
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.89,
|
19 |
"learning_rate": 0,
|
20 |
+
"loss": 1.7539,
|
21 |
"step": 2
|
22 |
},
|
23 |
{
|
24 |
"epoch": 1.33,
|
25 |
"learning_rate": 0,
|
26 |
+
"loss": 1.7347,
|
27 |
"step": 3
|
28 |
},
|
29 |
{
|
30 |
"epoch": 1.78,
|
31 |
"learning_rate": 0,
|
32 |
+
"loss": 1.709,
|
33 |
"step": 4
|
34 |
},
|
35 |
{
|
36 |
"epoch": 2.22,
|
37 |
"learning_rate": 0,
|
38 |
+
"loss": 1.7275,
|
39 |
"step": 5
|
40 |
},
|
41 |
{
|
42 |
"epoch": 2.67,
|
43 |
"learning_rate": 0,
|
44 |
+
"loss": 1.7085,
|
45 |
"step": 6
|
46 |
},
|
47 |
{
|
48 |
"epoch": 3.11,
|
49 |
"learning_rate": 0,
|
50 |
+
"loss": 1.7304,
|
51 |
"step": 7
|
52 |
},
|
53 |
{
|
54 |
"epoch": 3.56,
|
55 |
"learning_rate": 0,
|
56 |
+
"loss": 1.7121,
|
57 |
"step": 8
|
58 |
},
|
59 |
{
|
60 |
"epoch": 4.0,
|
61 |
"learning_rate": 0,
|
62 |
+
"loss": 1.719,
|
63 |
"step": 9
|
64 |
},
|
65 |
{
|
66 |
"epoch": 4.44,
|
67 |
"learning_rate": 0,
|
68 |
+
"loss": 1.7356,
|
69 |
"step": 10
|
70 |
},
|
71 |
{
|
72 |
"epoch": 4.89,
|
73 |
"learning_rate": 0,
|
74 |
+
"loss": 1.7842,
|
75 |
"step": 11
|
76 |
},
|
77 |
{
|
78 |
"epoch": 5.33,
|
79 |
"learning_rate": 0,
|
80 |
+
"loss": 1.7527,
|
81 |
"step": 12
|
82 |
},
|
83 |
{
|
84 |
"epoch": 5.78,
|
85 |
"learning_rate": 0,
|
86 |
+
"loss": 1.6973,
|
87 |
"step": 13
|
88 |
},
|
89 |
{
|
90 |
"epoch": 6.22,
|
91 |
"learning_rate": 0,
|
92 |
+
"loss": 1.7233,
|
93 |
"step": 14
|
94 |
},
|
95 |
{
|
96 |
"epoch": 6.67,
|
97 |
"learning_rate": 0,
|
98 |
+
"loss": 1.7313,
|
99 |
"step": 15
|
100 |
},
|
101 |
{
|
102 |
"epoch": 7.11,
|
103 |
+
"learning_rate": 0,
|
104 |
+
"loss": 1.6788,
|
105 |
"step": 16
|
106 |
},
|
107 |
{
|
108 |
"epoch": 7.56,
|
109 |
+
"learning_rate": 0.0,
|
110 |
+
"loss": 1.7022,
|
111 |
"step": 17
|
112 |
},
|
113 |
{
|
114 |
"epoch": 8.0,
|
115 |
+
"learning_rate": 1.2618595071429148e-05,
|
116 |
+
"loss": 1.6138,
|
117 |
"step": 18
|
118 |
},
|
119 |
{
|
120 |
"epoch": 8.44,
|
121 |
"learning_rate": 2e-05,
|
122 |
+
"loss": 1.5552,
|
123 |
"step": 19
|
124 |
},
|
125 |
{
|
126 |
"epoch": 8.89,
|
127 |
"learning_rate": 2e-05,
|
128 |
+
"loss": 1.457,
|
129 |
"step": 20
|
130 |
},
|
131 |
{
|
132 |
"epoch": 9.33,
|
133 |
"learning_rate": 2e-05,
|
134 |
+
"loss": 1.3525,
|
135 |
"step": 21
|
136 |
},
|
137 |
{
|
138 |
"epoch": 9.78,
|
139 |
"learning_rate": 2e-05,
|
140 |
+
"loss": 1.249,
|
141 |
"step": 22
|
142 |
},
|
143 |
{
|
144 |
"epoch": 10.22,
|
145 |
"learning_rate": 2e-05,
|
146 |
+
"loss": 1.148,
|
147 |
"step": 23
|
148 |
},
|
149 |
{
|
150 |
"epoch": 10.67,
|
151 |
"learning_rate": 2e-05,
|
152 |
+
"loss": 0.9726,
|
153 |
"step": 24
|
154 |
},
|
155 |
{
|
156 |
"epoch": 11.11,
|
157 |
"learning_rate": 2e-05,
|
158 |
+
"loss": 0.879,
|
159 |
"step": 25
|
160 |
},
|
161 |
{
|
162 |
"epoch": 11.56,
|
163 |
"learning_rate": 2e-05,
|
164 |
+
"loss": 0.761,
|
165 |
"step": 26
|
166 |
},
|
167 |
{
|
168 |
"epoch": 12.0,
|
169 |
"learning_rate": 2e-05,
|
170 |
+
"loss": 0.7408,
|
171 |
"step": 27
|
172 |
},
|
173 |
{
|
174 |
"epoch": 12.44,
|
175 |
"learning_rate": 2e-05,
|
176 |
+
"loss": 0.6326,
|
177 |
"step": 28
|
178 |
},
|
179 |
{
|
180 |
"epoch": 12.89,
|
181 |
"learning_rate": 2e-05,
|
182 |
+
"loss": 0.5798,
|
183 |
"step": 29
|
184 |
},
|
185 |
{
|
186 |
"epoch": 13.33,
|
187 |
"learning_rate": 2e-05,
|
188 |
+
"loss": 0.5512,
|
189 |
"step": 30
|
190 |
},
|
191 |
{
|
192 |
"epoch": 13.78,
|
193 |
"learning_rate": 2e-05,
|
194 |
+
"loss": 0.4236,
|
195 |
"step": 31
|
196 |
},
|
197 |
{
|
198 |
"epoch": 14.22,
|
199 |
"learning_rate": 2e-05,
|
200 |
+
"loss": 0.3581,
|
201 |
"step": 32
|
202 |
},
|
203 |
{
|
204 |
"epoch": 14.67,
|
205 |
"learning_rate": 2e-05,
|
206 |
+
"loss": 0.3329,
|
207 |
"step": 33
|
208 |
},
|
209 |
{
|
210 |
"epoch": 15.11,
|
211 |
"learning_rate": 2e-05,
|
212 |
+
"loss": 0.2962,
|
213 |
"step": 34
|
214 |
},
|
215 |
{
|
216 |
"epoch": 15.56,
|
217 |
"learning_rate": 2e-05,
|
218 |
+
"loss": 0.2572,
|
219 |
"step": 35
|
220 |
},
|
221 |
{
|
222 |
"epoch": 16.0,
|
223 |
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.2429,
|
225 |
"step": 36
|
226 |
},
|
227 |
{
|
228 |
"epoch": 16.44,
|
229 |
"learning_rate": 2e-05,
|
230 |
+
"loss": 0.191,
|
231 |
"step": 37
|
232 |
},
|
233 |
{
|
234 |
"epoch": 16.89,
|
235 |
"learning_rate": 2e-05,
|
236 |
+
"loss": 0.174,
|
237 |
"step": 38
|
238 |
},
|
239 |
{
|
240 |
"epoch": 17.33,
|
241 |
"learning_rate": 2e-05,
|
242 |
+
"loss": 0.1721,
|
243 |
"step": 39
|
244 |
},
|
245 |
{
|
246 |
"epoch": 17.78,
|
247 |
"learning_rate": 2e-05,
|
248 |
+
"loss": 0.1645,
|
249 |
"step": 40
|
250 |
},
|
251 |
{
|
252 |
"epoch": 18.22,
|
253 |
"learning_rate": 2e-05,
|
254 |
+
"loss": 0.1313,
|
255 |
"step": 41
|
256 |
},
|
257 |
{
|
258 |
"epoch": 18.67,
|
259 |
"learning_rate": 2e-05,
|
260 |
+
"loss": 0.1186,
|
261 |
"step": 42
|
262 |
},
|
263 |
{
|
264 |
"epoch": 19.11,
|
265 |
"learning_rate": 2e-05,
|
266 |
+
"loss": 0.1309,
|
267 |
"step": 43
|
268 |
},
|
269 |
{
|
270 |
"epoch": 19.56,
|
271 |
"learning_rate": 2e-05,
|
272 |
+
"loss": 0.1077,
|
273 |
"step": 44
|
274 |
},
|
275 |
{
|
276 |
"epoch": 20.0,
|
277 |
"learning_rate": 2e-05,
|
278 |
+
"loss": 0.1156,
|
279 |
"step": 45
|
280 |
},
|
281 |
{
|
282 |
"epoch": 20.44,
|
283 |
"learning_rate": 2e-05,
|
284 |
+
"loss": 0.1101,
|
285 |
"step": 46
|
286 |
},
|
287 |
{
|
288 |
"epoch": 20.89,
|
289 |
"learning_rate": 2e-05,
|
290 |
+
"loss": 0.0979,
|
291 |
"step": 47
|
292 |
},
|
293 |
{
|
294 |
"epoch": 21.33,
|
295 |
"learning_rate": 2e-05,
|
296 |
+
"loss": 0.101,
|
297 |
"step": 48
|
298 |
},
|
299 |
{
|
300 |
"epoch": 21.78,
|
301 |
"learning_rate": 2e-05,
|
302 |
+
"loss": 0.1001,
|
303 |
"step": 49
|
304 |
},
|
305 |
{
|
306 |
"epoch": 22.22,
|
307 |
"learning_rate": 2e-05,
|
308 |
+
"loss": 0.0894,
|
309 |
"step": 50
|
310 |
},
|
311 |
{
|
312 |
"epoch": 22.67,
|
313 |
"learning_rate": 2e-05,
|
314 |
+
"loss": 0.0948,
|
315 |
"step": 51
|
316 |
},
|
317 |
{
|
318 |
"epoch": 23.11,
|
319 |
"learning_rate": 2e-05,
|
320 |
+
"loss": 0.0861,
|
321 |
"step": 52
|
322 |
},
|
323 |
{
|
324 |
"epoch": 23.56,
|
325 |
"learning_rate": 2e-05,
|
326 |
+
"loss": 0.0895,
|
327 |
"step": 53
|
328 |
},
|
329 |
{
|
330 |
"epoch": 24.0,
|
331 |
"learning_rate": 2e-05,
|
332 |
+
"loss": 0.0918,
|
333 |
"step": 54
|
334 |
},
|
335 |
{
|
336 |
"epoch": 24.44,
|
337 |
"learning_rate": 2e-05,
|
338 |
+
"loss": 0.0841,
|
339 |
"step": 55
|
340 |
},
|
341 |
{
|
342 |
"epoch": 24.89,
|
343 |
"learning_rate": 2e-05,
|
344 |
+
"loss": 0.0756,
|
345 |
"step": 56
|
346 |
},
|
347 |
{
|
348 |
"epoch": 25.33,
|
349 |
"learning_rate": 2e-05,
|
350 |
+
"loss": 0.0913,
|
351 |
"step": 57
|
352 |
},
|
353 |
{
|
354 |
"epoch": 25.78,
|
355 |
"learning_rate": 2e-05,
|
356 |
+
"loss": 0.0796,
|
357 |
"step": 58
|
358 |
},
|
359 |
{
|
360 |
"epoch": 26.22,
|
361 |
"learning_rate": 2e-05,
|
362 |
+
"loss": 0.0816,
|
363 |
"step": 59
|
364 |
},
|
365 |
{
|
366 |
"epoch": 26.67,
|
367 |
"learning_rate": 2e-05,
|
368 |
+
"loss": 0.0728,
|
369 |
"step": 60
|
370 |
},
|
371 |
{
|
372 |
"epoch": 27.11,
|
373 |
"learning_rate": 2e-05,
|
374 |
+
"loss": 0.0823,
|
375 |
"step": 61
|
376 |
},
|
377 |
{
|
378 |
"epoch": 27.56,
|
379 |
"learning_rate": 2e-05,
|
380 |
+
"loss": 0.0798,
|
381 |
"step": 62
|
382 |
},
|
383 |
{
|
384 |
"epoch": 28.0,
|
385 |
"learning_rate": 2e-05,
|
386 |
+
"loss": 0.0693,
|
387 |
"step": 63
|
388 |
},
|
389 |
{
|
390 |
"epoch": 28.44,
|
391 |
"learning_rate": 2e-05,
|
392 |
+
"loss": 0.0805,
|
393 |
"step": 64
|
394 |
},
|
395 |
{
|
396 |
"epoch": 28.89,
|
397 |
"learning_rate": 2e-05,
|
398 |
+
"loss": 0.0685,
|
399 |
"step": 65
|
400 |
},
|
401 |
{
|
402 |
"epoch": 29.33,
|
403 |
"learning_rate": 2e-05,
|
404 |
+
"loss": 0.07,
|
405 |
"step": 66
|
406 |
},
|
407 |
{
|
408 |
"epoch": 29.78,
|
409 |
"learning_rate": 2e-05,
|
410 |
+
"loss": 0.0779,
|
411 |
"step": 67
|
412 |
},
|
413 |
{
|
414 |
"epoch": 30.22,
|
415 |
"learning_rate": 2e-05,
|
416 |
+
"loss": 0.0773,
|
417 |
"step": 68
|
418 |
},
|
419 |
{
|
420 |
"epoch": 30.67,
|
421 |
"learning_rate": 2e-05,
|
422 |
+
"loss": 0.0631,
|
423 |
"step": 69
|
424 |
},
|
425 |
{
|
426 |
"epoch": 31.11,
|
427 |
"learning_rate": 2e-05,
|
428 |
+
"loss": 0.0656,
|
429 |
"step": 70
|
430 |
},
|
431 |
{
|
432 |
"epoch": 31.56,
|
433 |
"learning_rate": 2e-05,
|
434 |
+
"loss": 0.074,
|
435 |
"step": 71
|
436 |
},
|
437 |
{
|
438 |
"epoch": 32.0,
|
439 |
"learning_rate": 2e-05,
|
440 |
+
"loss": 0.0651,
|
441 |
"step": 72
|
442 |
},
|
443 |
{
|
444 |
"epoch": 32.44,
|
445 |
"learning_rate": 2e-05,
|
446 |
+
"loss": 0.0646,
|
447 |
"step": 73
|
448 |
},
|
449 |
{
|
450 |
"epoch": 32.89,
|
451 |
"learning_rate": 2e-05,
|
452 |
+
"loss": 0.0699,
|
453 |
"step": 74
|
454 |
},
|
455 |
{
|
456 |
"epoch": 33.33,
|
457 |
"learning_rate": 2e-05,
|
458 |
+
"loss": 0.0578,
|
459 |
"step": 75
|
460 |
},
|
461 |
{
|
462 |
"epoch": 33.78,
|
463 |
"learning_rate": 2e-05,
|
464 |
+
"loss": 0.0763,
|
465 |
"step": 76
|
466 |
},
|
467 |
{
|
468 |
"epoch": 34.22,
|
469 |
"learning_rate": 2e-05,
|
470 |
+
"loss": 0.0651,
|
471 |
"step": 77
|
472 |
},
|
473 |
{
|
474 |
"epoch": 34.67,
|
475 |
"learning_rate": 2e-05,
|
476 |
+
"loss": 0.0565,
|
477 |
"step": 78
|
478 |
},
|
479 |
{
|
480 |
"epoch": 35.11,
|
481 |
"learning_rate": 2e-05,
|
482 |
+
"loss": 0.0585,
|
483 |
"step": 79
|
484 |
},
|
485 |
{
|
486 |
"epoch": 35.56,
|
487 |
"learning_rate": 2e-05,
|
488 |
+
"loss": 0.069,
|
489 |
"step": 80
|
490 |
},
|
491 |
{
|
492 |
"epoch": 36.0,
|
493 |
"learning_rate": 2e-05,
|
494 |
+
"loss": 0.0571,
|
495 |
"step": 81
|
496 |
},
|
497 |
{
|
498 |
"epoch": 36.44,
|
499 |
"learning_rate": 2e-05,
|
500 |
+
"loss": 0.0599,
|
501 |
"step": 82
|
502 |
},
|
503 |
{
|
504 |
"epoch": 36.89,
|
505 |
"learning_rate": 2e-05,
|
506 |
+
"loss": 0.0639,
|
507 |
"step": 83
|
508 |
},
|
509 |
{
|
510 |
"epoch": 37.33,
|
511 |
"learning_rate": 2e-05,
|
512 |
+
"loss": 0.0625,
|
513 |
"step": 84
|
514 |
},
|
515 |
{
|
516 |
"epoch": 37.78,
|
517 |
"learning_rate": 2e-05,
|
518 |
+
"loss": 0.0631,
|
519 |
"step": 85
|
520 |
},
|
521 |
{
|
522 |
"epoch": 38.22,
|
523 |
"learning_rate": 2e-05,
|
524 |
+
"loss": 0.0552,
|
525 |
"step": 86
|
526 |
},
|
527 |
{
|
528 |
"epoch": 38.67,
|
529 |
"learning_rate": 2e-05,
|
530 |
+
"loss": 0.0681,
|
531 |
"step": 87
|
532 |
},
|
533 |
{
|
534 |
"epoch": 39.11,
|
535 |
"learning_rate": 2e-05,
|
536 |
+
"loss": 0.0566,
|
537 |
"step": 88
|
538 |
},
|
539 |
{
|
540 |
"epoch": 39.56,
|
541 |
"learning_rate": 2e-05,
|
542 |
+
"loss": 0.0594,
|
543 |
"step": 89
|
544 |
},
|
545 |
{
|
546 |
"epoch": 40.0,
|
547 |
"learning_rate": 2e-05,
|
548 |
+
"loss": 0.0661,
|
549 |
"step": 90
|
550 |
},
|
551 |
{
|
552 |
"epoch": 40.44,
|
553 |
"learning_rate": 2e-05,
|
554 |
+
"loss": 0.0632,
|
555 |
"step": 91
|
556 |
},
|
557 |
{
|
558 |
"epoch": 40.89,
|
559 |
"learning_rate": 2e-05,
|
560 |
+
"loss": 0.0529,
|
561 |
"step": 92
|
562 |
},
|
563 |
{
|
564 |
"epoch": 41.33,
|
565 |
"learning_rate": 2e-05,
|
566 |
+
"loss": 0.0574,
|
567 |
"step": 93
|
568 |
},
|
569 |
{
|
570 |
"epoch": 41.78,
|
571 |
"learning_rate": 2e-05,
|
572 |
+
"loss": 0.055,
|
573 |
"step": 94
|
574 |
},
|
575 |
{
|
576 |
"epoch": 42.22,
|
577 |
"learning_rate": 2e-05,
|
578 |
+
"loss": 0.0525,
|
579 |
"step": 95
|
580 |
},
|
581 |
{
|
582 |
"epoch": 42.67,
|
583 |
"learning_rate": 2e-05,
|
584 |
+
"loss": 0.0625,
|
585 |
"step": 96
|
586 |
},
|
587 |
{
|
588 |
"epoch": 43.11,
|
589 |
"learning_rate": 2e-05,
|
590 |
+
"loss": 0.0462,
|
591 |
"step": 97
|
592 |
},
|
593 |
{
|
594 |
"epoch": 43.56,
|
595 |
"learning_rate": 2e-05,
|
596 |
+
"loss": 0.0615,
|
597 |
"step": 98
|
598 |
},
|
599 |
{
|
600 |
"epoch": 44.0,
|
601 |
"learning_rate": 2e-05,
|
602 |
+
"loss": 0.0486,
|
603 |
"step": 99
|
604 |
},
|
605 |
{
|
606 |
"epoch": 44.44,
|
607 |
"learning_rate": 2e-05,
|
608 |
+
"loss": 0.0539,
|
609 |
"step": 100
|
610 |
},
|
611 |
{
|
612 |
"epoch": 44.44,
|
613 |
"step": 100,
|
614 |
+
"total_flos": 7439520890880.0,
|
615 |
+
"train_loss": 0.49884208038449285,
|
616 |
+
"train_runtime": 9870.4378,
|
617 |
+
"train_samples_per_second": 0.973,
|
618 |
"train_steps_per_second": 0.01
|
619 |
}
|
620 |
],
|
|
|
622 |
"max_steps": 100,
|
623 |
"num_train_epochs": 50,
|
624 |
"save_steps": 200,
|
625 |
+
"total_flos": 7439520890880.0,
|
626 |
"trial_name": null,
|
627 |
"trial_params": null
|
628 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6523
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d82a4c57a79a807d2d8164061827388f4a5ee4587c5aa26830fa7c388af4e898
|
3 |
size 6523
|