Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -3
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,37 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 269.91 +/- 19.60
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c11c52a1260>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c11c52a1300>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c11c52a13a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c11c52a1440>", "_build": "<function ActorCriticPolicy._build at 0x7c11c52a14e0>", "forward": "<function ActorCriticPolicy.forward at 0x7c11c52a1580>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c11c52a1620>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c11c52a16c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c11c52a1760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c11c52a1800>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c11c52a18a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c11c52a1940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c11c5208d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1763226638712980923, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACm/Mu9LqudP+c9GL79lqC+WguAvu9ojL0AAAAAAAAAAJDRyz7FCCM/6iZyvvXl474YVKA+vcsLvgAAAAAAAAAA3Tdovvo1iz+ayJy+p36fvnBOwb4OI5e9AAAAAAAAAADN8ys+KUFCvMSblDw2GNu6CLWsvRKQs7sAAIA/AACAP7qcHj6631I+h4Svvqc8g77mmem9E691PAAAAAAAAAAAxkptPoemoD/juNo+ClAXv79fUj4tBFs+AAAAAAAAAACz0ge9UsixuUa4jzUJm4svaU++u7Mqs7QAAIA/AACAP805AT5BnAY+MtcdvpBrQL4zLQM94kCquwAAAAAAAAAAiiKMPmC58T797YO+pXmBvruDJj5EoiC+AAAAAAAAAABm5vw7ri/DuqXZHbxd1pc8oJy7u8pIgz0AAIA/AACAP2bWUrwU7KW6vxCpOgKlLLb87DO5RRPCuQAAgD8AAIA/bbw1Pi5jgD9WbYY+ZRDWvi/ZNT7qUJQ9AAAAAAAAAABz2vk9fhPCPa8CNr5N1Cm+KCsXvOVekzsAAAAAAAAAADOVHj5mP4E/rQx8Pn0w7L6Y/TU+WCc9PQAAAAAAAAAAAD1UPRDkvj6dhYC7GrCOvgLGajylM9g8AAAAAAAAAADamG++ZNqKP6zURL7x57S+iBTqvvXub70AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFlDxG2CumMAWyUTVkBjAF0lEdAm/d8MZxaPnV9lChoBkdAcirhtLteD2gHTQYBaAhHQJv3lmGucMF1fZQoaAZHQHEDYR28qWloB01RAWgIR0Cb97ecx0uEdX2UKGgGR0BzZTvQWvbHaAdNAAFoCEdAm/f0PhAGCHV9lChoBkdAcrhqp97Wu2gHTS0BaAhHQJv4cSVW0Z51fZQoaAZHQHMzqf4AS39oB00kAWgIR0Cb+Yo5xR2sdX2UKGgGR0Bwn/2rXDm9aAdNBAFoCEdAm/poPbwjMXV9lChoBkdAbmIcWCVbA2gHTSkBaAhHQJv683dbgTB1fZQoaAZHQHJo6PwNLDhoB00AAWgIR0Cb+z0h/y5JdX2UKGgGR0BxJUbhm5DraAdNMgFoCEdAm/tYrjHXE3V9lChoBkdAb7m+SKWLP2gHTRgBaAhHQJv7bCdjG1h1fZQoaAZHQHGl9B8hLXdoB0vsaAhHQJv7hybQTmJ1fZQoaAZHQFt2xKQJXyRoB03oA2gIR0Cb+9X1rZandX2UKGgGR0ByWOmR/3FlaAdNIgFoCEdAm/z0Vzp5eXV9lChoBkdAck2UkfLcK2gHS/JoCEdAm/5ML8aXKXV9lChoBkdAb8+SzPa+OGgHS/RoCEdAm/56IBRyfnV9lChoBkdAcP/8jRlYl2gHTTMBaAhHQJv/nVDrqt51fZQoaAZHQHCZpON5t3xoB00fAWgIR0Cb/6Ty8SPEdX2UKGgGR0ByBuxPfsNUaAdNFwFoCEdAnABoHTqjanV9lChoBkdAbTGYGdI5HWgHS/RoCEdAnAByMUAT7HV9lChoBkdAcdoJMQEpzGgHTTABaAhHQJwAmcAiml91fZQoaAZHQHJt2R7qptJoB01BAWgIR0CcAKDaGpMpdX2UKGgGR0BwiFE7W/ahaAdNGQFoCEdAnAIupwS8J3V9lChoBkdAclbnwG4ZuWgHTQMBaAhHQJwCRmapgkV1fZQoaAZHQG4ELIo3JgdoB0v4aAhHQJwCRw0fozN1fZQoaAZHQHJxJ7LMcIZoB00EAWgIR0CcAmbJfYz0dX2UKGgGR0BwNZnwob4raAdNDAFoCEdAnAKr+PzWgHV9lChoBkdAcAdbJwKjSGgHTRkBaAhHQJwDeM6zVtp1fZQoaAZHQHAaZqmCROloB02HAWgIR0CcBZSa3I+4dX2UKGgGR0Bwba8nNPgvaAdNBQFoCEdAnAWl3Qla83V9lChoBkdAcxgsUIsyz2gHTUIBaAhHQJwF/spobn51fZQoaAZHQHIYik43m3hoB00eAWgIR0CcBpTOxB3SdX2UKGgGR0Bs9hHmRvFWaAdL/WgIR0CcBqrQw9JSdX2UKGgGR0BvKF9v0h/zaAdNRAFoCEdAnAjkQoTfznV9lChoBkdAcISF9a2Wp2gHTSkBaAhHQJwI46Kcd5p1fZQoaAZHQHA7ntWuHN5oB00pAWgIR0CcCO5HEuQIdX2UKGgGR0Bykwj6eoUBaAdNKQFoCEdAnAkW2gFotnV9lChoBkdAb9CN6w+t82gHS+9oCEdAnAmcOf/WD3V9lChoBkdAcdbKLsKLKmgHTUMBaAhHQJwJ1n5BTn91fZQoaAZHQHHtDPGACnxoB00FAWgIR0CcCeplz2eydX2UKGgGR0Bz0e3rleWwaAdNEQFoCEdAnAoIaUA1enV9lChoBkdAbCl4SHuZ1GgHTRkBaAhHQJwKUbm2b5N1fZQoaAZHQHB7aH0se4loB00jAWgIR0CcCoz5GjKxdX2UKGgGR0Bx8aSpzcREaAdNIAFoCEdAnAufNRm9QHV9lChoBkdAcTWvicXm/2gHS/VoCEdAnCD+GKyfMHV9lChoBkdAcUbvaURnOGgHS/loCEdAnCEnIlt0m3V9lChoBkdAb4V/Lkjop2gHTSQBaAhHQJwjSRV6u4h1fZQoaAZHQHE5XAZbY9RoB0v6aAhHQJwkWIdlum91fZQoaAZHQHJoR5xBE8doB0v/aAhHQJwkjFKkEcN1fZQoaAZHQHKLQSnLq2VoB0v6aAhHQJwknSlWOp91fZQoaAZHQHJlwo1DSgJoB01QAWgIR0CcJOVBlcyFdX2UKGgGR0Bu9Q9kjHGTaAdNBgFoCEdAnCWO8scyWXV9lChoBkdAcgGgOz6acGgHTX0BaAhHQJwll3X7LuB1fZQoaAZHQHMUUm2LHdZoB00pAWgIR0CcJdgE2YOUdX2UKGgGR0BxTwsQNCqqaAdNFwFoCEdAnCbSbtqpLnV9lChoBkdAcSjbTMJQcmgHTRABaAhHQJwm6PEKmbd1fZQoaAZHQHMeUx20Re1oB00vAWgIR0CcJv2SdOIqdX2UKGgGR0BvaDFfiPyTaAdNLAFoCEdAnCcYL5RCQnV9lChoBkdAcF99tdiUgWgHTTIBaAhHQJwnJMg2ZRd1fZQoaAZHQHC4dSIgvDhoB00HAWgIR0CcJ6+bExZddX2UKGgGR0BvWLg4wRGuaAdNGwFoCEdAnCkcCo0hvHV9lChoBkdAcv4r8BMi8mgHTS4BaAhHQJwpbbUPQOZ1fZQoaAZHQHHYLdznzQNoB00KAWgIR0CcKqRL9MsZdX2UKGgGR0BwQSf8MuvmaAdNDgFoCEdAnCvi4J/oaHV9lChoBkdAb3Cf6GgzxmgHTRcBaAhHQJwsBesxO+J1fZQoaAZHQHF+cyi22G9oB00fAWgIR0CcLNTCcf/4dX2UKGgGR0BxL+z9jwx4aAdNEwFoCEdAnC0qjafzz3V9lChoBkdAcFKvkili0GgHTQQBaAhHQJwuK9DhLoR1fZQoaAZHQHNyQyuZCv5oB00pAWgIR0CcLjWyC4BndX2UKGgGR0BxLwFkhA4XaAdL/WgIR0CcLjyWiUPhdX2UKGgGR0By8+VD8cdYaAdNBwFoCEdAnC5cWCVbA3V9lChoBkdAce4X6qKgqWgHTRcBaAhHQJwuoXXRPXV1fZQoaAZHQHIPsEFGG21oB01tAWgIR0CcLvS00FbFdX2UKGgGR0ByqkKD0163aAdNAgFoCEdAnC8XAymALHV9lChoBkdAcCb7VrhzeWgHTVQBaAhHQJwvJGRV6u51fZQoaAZHQHLf16u4gA9oB01WAWgIR0CcMGXFLnLadX2UKGgGR0ByNE+yJKraaAdNOAFoCEdAnDJZeu3c6HV9lChoBkdAcbf7+1jRUmgHTUgBaAhHQJwycmXw9aF1fZQoaAZHQHGIOmWMS9NoB00WAWgIR0CcMqUM5OrRdX2UKGgGR0BPWnZbpu/DaAdL3GgIR0CcMy3UQTVUdX2UKGgGR0Byrfwob4rSaAdNCAFoCEdAnDN1Sn+AE3V9lChoBkdAcCeaxHG0eGgHTSUBaAhHQJw0LPt2LYR1fZQoaAZHQHGR1fVqeshoB0vpaAhHQJw0bfQ8fV91fZQoaAZHQHOuzDTBqKxoB00jAWgIR0CcNOcKgIyCdX2UKGgGR0BtcTApKBd2aAdNBQFoCEdAnDVCdrftQnV9lChoBkdAcIqF1B+nZWgHS/poCEdAnDWv1pTMq3V9lChoBkdAcHb/1xsEaGgHTQYBaAhHQJw2OmXPZ7J1fZQoaAZHQHK+HO0LMLZoB01HAWgIR0CcNznKnvUjdX2UKGgGR0BxfJ/axoqTaAdNhQFoCEdAnDjmoFV1fXV9lChoBkdAcewp+MIeHWgHS+toCEdAnDkGU4aP0nV9lChoBkdAcjSfa6BiC2gHTWwBaAhHQJw5IfYBeX11fZQoaAZHQHCrfms/6ftoB00CAWgIR0CcOcqpLmITdX2UKGgGR0Bub/DziCJ5aAdNawFoCEdAnDrKNp/PPnV9lChoBkdAcjQ/VAiV0WgHTR8BaAhHQJw66tFKCg91fZQoaAZHQHC+Isqaw2VoB002AWgIR0CcPD4CZF5OdX2UKGgGR0BwFHX5FgDzaAdNDAFoCEdAnDxP4h2W6nV9lChoBkdAbHysNDtw72gHS/xoCEdAnDxXP7el9HV9lChoBkdAcL8Oq//Nq2gHTRoBaAhHQJw8dGqgh8p1fZQoaAZHQHCuMYl6Z6VoB001AWgIR0CcPIPGACnxdX2UKGgGR0BuOSCOFQEZaAdL/2gIR0CcPLat9x6wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.6.105+-x86_64-with-glibc2.35 # 1 SMP Thu Oct 2 10:42:05 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e25b493fa6b4e805724dd96916dbf0a08215a87dec02e5a4f8fbbca29ad00bf4
|
| 3 |
+
size 148092
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c11c52a1260>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c11c52a1300>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c11c52a13a0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c11c52a1440>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c11c52a14e0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c11c52a1580>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c11c52a1620>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c11c52a16c0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c11c52a1760>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c11c52a1800>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c11c52a18a0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c11c52a1940>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c11c5208d00>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1763226638712980923,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACm/Mu9LqudP+c9GL79lqC+WguAvu9ojL0AAAAAAAAAAJDRyz7FCCM/6iZyvvXl474YVKA+vcsLvgAAAAAAAAAA3Tdovvo1iz+ayJy+p36fvnBOwb4OI5e9AAAAAAAAAADN8ys+KUFCvMSblDw2GNu6CLWsvRKQs7sAAIA/AACAP7qcHj6631I+h4Svvqc8g77mmem9E691PAAAAAAAAAAAxkptPoemoD/juNo+ClAXv79fUj4tBFs+AAAAAAAAAACz0ge9UsixuUa4jzUJm4svaU++u7Mqs7QAAIA/AACAP805AT5BnAY+MtcdvpBrQL4zLQM94kCquwAAAAAAAAAAiiKMPmC58T797YO+pXmBvruDJj5EoiC+AAAAAAAAAABm5vw7ri/DuqXZHbxd1pc8oJy7u8pIgz0AAIA/AACAP2bWUrwU7KW6vxCpOgKlLLb87DO5RRPCuQAAgD8AAIA/bbw1Pi5jgD9WbYY+ZRDWvi/ZNT7qUJQ9AAAAAAAAAABz2vk9fhPCPa8CNr5N1Cm+KCsXvOVekzsAAAAAAAAAADOVHj5mP4E/rQx8Pn0w7L6Y/TU+WCc9PQAAAAAAAAAAAD1UPRDkvj6dhYC7GrCOvgLGajylM9g8AAAAAAAAAADamG++ZNqKP6zURL7x57S+iBTqvvXub70AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFlDxG2CumMAWyUTVkBjAF0lEdAm/d8MZxaPnV9lChoBkdAcirhtLteD2gHTQYBaAhHQJv3lmGucMF1fZQoaAZHQHEDYR28qWloB01RAWgIR0Cb97ecx0uEdX2UKGgGR0BzZTvQWvbHaAdNAAFoCEdAm/f0PhAGCHV9lChoBkdAcrhqp97Wu2gHTS0BaAhHQJv4cSVW0Z51fZQoaAZHQHMzqf4AS39oB00kAWgIR0Cb+Yo5xR2sdX2UKGgGR0Bwn/2rXDm9aAdNBAFoCEdAm/poPbwjMXV9lChoBkdAbmIcWCVbA2gHTSkBaAhHQJv683dbgTB1fZQoaAZHQHJo6PwNLDhoB00AAWgIR0Cb+z0h/y5JdX2UKGgGR0BxJUbhm5DraAdNMgFoCEdAm/tYrjHXE3V9lChoBkdAb7m+SKWLP2gHTRgBaAhHQJv7bCdjG1h1fZQoaAZHQHGl9B8hLXdoB0vsaAhHQJv7hybQTmJ1fZQoaAZHQFt2xKQJXyRoB03oA2gIR0Cb+9X1rZandX2UKGgGR0ByWOmR/3FlaAdNIgFoCEdAm/z0Vzp5eXV9lChoBkdAck2UkfLcK2gHS/JoCEdAm/5ML8aXKXV9lChoBkdAb8+SzPa+OGgHS/RoCEdAm/56IBRyfnV9lChoBkdAcP/8jRlYl2gHTTMBaAhHQJv/nVDrqt51fZQoaAZHQHCZpON5t3xoB00fAWgIR0Cb/6Ty8SPEdX2UKGgGR0ByBuxPfsNUaAdNFwFoCEdAnABoHTqjanV9lChoBkdAbTGYGdI5HWgHS/RoCEdAnAByMUAT7HV9lChoBkdAcdoJMQEpzGgHTTABaAhHQJwAmcAiml91fZQoaAZHQHJt2R7qptJoB01BAWgIR0CcAKDaGpMpdX2UKGgGR0BwiFE7W/ahaAdNGQFoCEdAnAIupwS8J3V9lChoBkdAclbnwG4ZuWgHTQMBaAhHQJwCRmapgkV1fZQoaAZHQG4ELIo3JgdoB0v4aAhHQJwCRw0fozN1fZQoaAZHQHJxJ7LMcIZoB00EAWgIR0CcAmbJfYz0dX2UKGgGR0BwNZnwob4raAdNDAFoCEdAnAKr+PzWgHV9lChoBkdAcAdbJwKjSGgHTRkBaAhHQJwDeM6zVtp1fZQoaAZHQHAaZqmCROloB02HAWgIR0CcBZSa3I+4dX2UKGgGR0Bwba8nNPgvaAdNBQFoCEdAnAWl3Qla83V9lChoBkdAcxgsUIsyz2gHTUIBaAhHQJwF/spobn51fZQoaAZHQHIYik43m3hoB00eAWgIR0CcBpTOxB3SdX2UKGgGR0Bs9hHmRvFWaAdL/WgIR0CcBqrQw9JSdX2UKGgGR0BvKF9v0h/zaAdNRAFoCEdAnAjkQoTfznV9lChoBkdAcISF9a2Wp2gHTSkBaAhHQJwI46Kcd5p1fZQoaAZHQHA7ntWuHN5oB00pAWgIR0CcCO5HEuQIdX2UKGgGR0Bykwj6eoUBaAdNKQFoCEdAnAkW2gFotnV9lChoBkdAb9CN6w+t82gHS+9oCEdAnAmcOf/WD3V9lChoBkdAcdbKLsKLKmgHTUMBaAhHQJwJ1n5BTn91fZQoaAZHQHHtDPGACnxoB00FAWgIR0CcCeplz2eydX2UKGgGR0Bz0e3rleWwaAdNEQFoCEdAnAoIaUA1enV9lChoBkdAbCl4SHuZ1GgHTRkBaAhHQJwKUbm2b5N1fZQoaAZHQHB7aH0se4loB00jAWgIR0CcCoz5GjKxdX2UKGgGR0Bx8aSpzcREaAdNIAFoCEdAnAufNRm9QHV9lChoBkdAcTWvicXm/2gHS/VoCEdAnCD+GKyfMHV9lChoBkdAcUbvaURnOGgHS/loCEdAnCEnIlt0m3V9lChoBkdAb4V/Lkjop2gHTSQBaAhHQJwjSRV6u4h1fZQoaAZHQHE5XAZbY9RoB0v6aAhHQJwkWIdlum91fZQoaAZHQHJoR5xBE8doB0v/aAhHQJwkjFKkEcN1fZQoaAZHQHKLQSnLq2VoB0v6aAhHQJwknSlWOp91fZQoaAZHQHJlwo1DSgJoB01QAWgIR0CcJOVBlcyFdX2UKGgGR0Bu9Q9kjHGTaAdNBgFoCEdAnCWO8scyWXV9lChoBkdAcgGgOz6acGgHTX0BaAhHQJwll3X7LuB1fZQoaAZHQHMUUm2LHdZoB00pAWgIR0CcJdgE2YOUdX2UKGgGR0BxTwsQNCqqaAdNFwFoCEdAnCbSbtqpLnV9lChoBkdAcSjbTMJQcmgHTRABaAhHQJwm6PEKmbd1fZQoaAZHQHMeUx20Re1oB00vAWgIR0CcJv2SdOIqdX2UKGgGR0BvaDFfiPyTaAdNLAFoCEdAnCcYL5RCQnV9lChoBkdAcF99tdiUgWgHTTIBaAhHQJwnJMg2ZRd1fZQoaAZHQHC4dSIgvDhoB00HAWgIR0CcJ6+bExZddX2UKGgGR0BvWLg4wRGuaAdNGwFoCEdAnCkcCo0hvHV9lChoBkdAcv4r8BMi8mgHTS4BaAhHQJwpbbUPQOZ1fZQoaAZHQHHYLdznzQNoB00KAWgIR0CcKqRL9MsZdX2UKGgGR0BwQSf8MuvmaAdNDgFoCEdAnCvi4J/oaHV9lChoBkdAb3Cf6GgzxmgHTRcBaAhHQJwsBesxO+J1fZQoaAZHQHF+cyi22G9oB00fAWgIR0CcLNTCcf/4dX2UKGgGR0BxL+z9jwx4aAdNEwFoCEdAnC0qjafzz3V9lChoBkdAcFKvkili0GgHTQQBaAhHQJwuK9DhLoR1fZQoaAZHQHNyQyuZCv5oB00pAWgIR0CcLjWyC4BndX2UKGgGR0BxLwFkhA4XaAdL/WgIR0CcLjyWiUPhdX2UKGgGR0By8+VD8cdYaAdNBwFoCEdAnC5cWCVbA3V9lChoBkdAce4X6qKgqWgHTRcBaAhHQJwuoXXRPXV1fZQoaAZHQHIPsEFGG21oB01tAWgIR0CcLvS00FbFdX2UKGgGR0ByqkKD0163aAdNAgFoCEdAnC8XAymALHV9lChoBkdAcCb7VrhzeWgHTVQBaAhHQJwvJGRV6u51fZQoaAZHQHLf16u4gA9oB01WAWgIR0CcMGXFLnLadX2UKGgGR0ByNE+yJKraaAdNOAFoCEdAnDJZeu3c6HV9lChoBkdAcbf7+1jRUmgHTUgBaAhHQJwycmXw9aF1fZQoaAZHQHGIOmWMS9NoB00WAWgIR0CcMqUM5OrRdX2UKGgGR0BPWnZbpu/DaAdL3GgIR0CcMy3UQTVUdX2UKGgGR0Byrfwob4rSaAdNCAFoCEdAnDN1Sn+AE3V9lChoBkdAcCeaxHG0eGgHTSUBaAhHQJw0LPt2LYR1fZQoaAZHQHGR1fVqeshoB0vpaAhHQJw0bfQ8fV91fZQoaAZHQHOuzDTBqKxoB00jAWgIR0CcNOcKgIyCdX2UKGgGR0BtcTApKBd2aAdNBQFoCEdAnDVCdrftQnV9lChoBkdAcIqF1B+nZWgHS/poCEdAnDWv1pTMq3V9lChoBkdAcHb/1xsEaGgHTQYBaAhHQJw2OmXPZ7J1fZQoaAZHQHK+HO0LMLZoB01HAWgIR0CcNznKnvUjdX2UKGgGR0BxfJ/axoqTaAdNhQFoCEdAnDjmoFV1fXV9lChoBkdAcewp+MIeHWgHS+toCEdAnDkGU4aP0nV9lChoBkdAcjSfa6BiC2gHTWwBaAhHQJw5IfYBeX11fZQoaAZHQHCrfms/6ftoB00CAWgIR0CcOcqpLmITdX2UKGgGR0Bub/DziCJ5aAdNawFoCEdAnDrKNp/PPnV9lChoBkdAcjQ/VAiV0WgHTR8BaAhHQJw66tFKCg91fZQoaAZHQHC+Isqaw2VoB002AWgIR0CcPD4CZF5OdX2UKGgGR0BwFHX5FgDzaAdNDAFoCEdAnDxP4h2W6nV9lChoBkdAbHysNDtw72gHS/xoCEdAnDxXP7el9HV9lChoBkdAcL8Oq//Nq2gHTRoBaAhHQJw8dGqgh8p1fZQoaAZHQHCuMYl6Z6VoB001AWgIR0CcPIPGACnxdX2UKGgGR0BuOSCOFQEZaAdL/2gIR0CcPLat9x6wdWUu"
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 248,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25eb8c9addb89c5bd150fcc4985de4a45f60184fab181dd010669e11fd8d1587
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1db3da53165ac65a7bde6a579eaf3dc2646e4d74cd580a4e976ac51c0e89e333
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.6.105+-x86_64-with-glibc2.35 # 1 SMP Thu Oct 2 10:42:05 UTC 2025
|
| 2 |
+
- Python: 3.11.13
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.6.0+cu124
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 2.0.2
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e61aaeaf5705fbb95a781f21fef952f0ee8bcf8f2f61f2c13e616ec07a7c6af5
|
| 3 |
+
size 171656
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 269.9098959998618, "std_reward": 19.604129852300918, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-11-15T17:35:05.280579"}
|