nli-finetune-model / README.md
underfit's picture
update model card README.md
07ab78c
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - multi_nli
metrics:
  - accuracy
model-index:
  - name: nli-finetune-model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: multi_nli
          type: multi_nli
          config: default
          split: validation_matched
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7793333333333333

nli-finetune-model

This model is a fine-tuned version of bert-large-uncased on the multi_nli dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2551
  • Accuracy: 0.7793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6813 1.0 2500 0.6655 0.7657
0.5632 2.0 5000 1.0409 0.778
0.3753 3.0 7500 1.2551 0.7793

Framework versions

  • Transformers 4.28.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3