ultimecia's picture
Training completed!
6077ac7 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9385
          - name: F1
            type: f1
            value: 0.938496854642063

distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1910
  • Accuracy: 0.9385
  • F1: 0.9385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 63 0.3110 0.907 0.9066
No log 2.0 126 0.2093 0.9255 0.9264
No log 3.0 189 0.1683 0.931 0.9312
0.2667 4.0 252 0.1564 0.932 0.9319
0.2667 5.0 315 0.1541 0.9325 0.9328
0.2667 6.0 378 0.1577 0.9375 0.9378
0.2667 7.0 441 0.1547 0.9355 0.9357
0.0894 8.0 504 0.1528 0.9385 0.9386
0.0894 9.0 567 0.1630 0.9395 0.9394
0.0894 10.0 630 0.1745 0.9425 0.9427
0.0894 11.0 693 0.1635 0.9385 0.9385
0.0567 12.0 756 0.1706 0.938 0.9381
0.0567 13.0 819 0.1740 0.941 0.9413
0.0567 14.0 882 0.1766 0.94 0.9403
0.0567 15.0 945 0.1832 0.938 0.9382
0.0397 16.0 1008 0.1871 0.9385 0.9388
0.0397 17.0 1071 0.1889 0.938 0.9382
0.0397 18.0 1134 0.1908 0.935 0.9354
0.0397 19.0 1197 0.1907 0.94 0.9399
0.0284 20.0 1260 0.1910 0.9385 0.9385

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2