ukung commited on
Commit
7b302b9
1 Parent(s): a0833c3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +353 -3
README.md CHANGED
@@ -1,3 +1,353 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Yellow-AI-NLP/komodo-7b-base
3
+ inference: false
4
+ license: apache-2.0
5
+ model_type: llama
6
+ pipeline_tag: text-generation
7
+ prompt_template: '<s>[INST] {prompt} [/INST]
8
+
9
+ '
10
+ quantized_by: ukung
11
+ tags:
12
+ - finetuned
13
+ ---
14
+ <!-- markdownlint-disable MD041 -->
15
+
16
+ <!-- description start -->
17
+ ## Description
18
+ These files were quantised using hardware kindly provided by [Massed Compute](https://kaggle.com/).
19
+
20
+ <!-- description end -->
21
+ <!-- README_GGUF.md-about-gguf start -->
22
+ ### About GGUF
23
+
24
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
25
+
26
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
27
+
28
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
29
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
30
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
31
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
32
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
33
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
34
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
35
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
36
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
37
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
38
+
39
+ <!-- README_GGUF.md-about-gguf end -->
40
+ <!-- repositories-available start -->
41
+ ## Repositories available
42
+
43
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/ukung/komodo-7b-base-GGUF)
44
+ * [Model original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ukung/komodo-7b-base-GGUF)
45
+ <!-- repositories-available end -->
46
+
47
+ <!-- prompt-template start -->
48
+ ## Prompt template: Mistral
49
+
50
+ ```
51
+ <s>[INST] {prompt} [/INST]
52
+
53
+ ```
54
+
55
+ <!-- prompt-template end -->
56
+
57
+
58
+ <!-- compatibility_gguf start -->
59
+ ## Compatibility
60
+
61
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
62
+
63
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
64
+
65
+ ## Explanation of quantisation methods
66
+
67
+ <details>
68
+ <summary>Click to see details</summary>
69
+
70
+ The new methods available are:
71
+
72
+ * q2_k: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.
73
+ * q3_k_l: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
74
+ * q3_k_m: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
75
+ * q3_k_s: Uses Q3_K for all tensors
76
+ * q4_0: Original quant method, 4-bit.
77
+ * q4_1: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
78
+ * q4_k_m: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K
79
+ * q4_k_s: Uses Q4_K for all tensors
80
+ * q5_0: Higher accuracy, higher resource usage and slower inference.
81
+ * q5_1: Even higher accuracy, resource usage and slower inference.
82
+ * q5_k_m: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K
83
+ * q5_k_s: Uses Q5_K for all tensors
84
+ * q6_k: Uses Q8_K for all tensors
85
+ * q8_0: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.
86
+
87
+ Refer to the Provided Files table below to see what files use which methods, and how.
88
+ </details>
89
+ <!-- compatibility_gguf end -->
90
+
91
+ <!-- README_GGUF.md-provided-files start -->
92
+ ## Provided files
93
+
94
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
95
+ | ---- | ---- | ---- | ---- | ---- | ----- |
96
+ | [komodo-7b-base-q2_k.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q2_k.gguf) | Q2_K | 2 | 2.55 GB | Tidak diketahui | smallest, significant quality loss - not recommended for most purposes |
97
+ | [komodo-7b-base-q3_k_l.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q3_k_l.gguf) | Q3_K_L | 3 | 3.61 GB | Tidak diketahui | very small, high quality loss |
98
+ | [komodo-7b-base-q3_k_m.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q3_k_m.gguf) | Q3_K_M | 3 | 3.31 GB | Tidak diketahui | very small, high quality loss |
99
+ | [komodo-7b-base-q3_k_s.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q3_k_s.gguf) | Q3_K_S | 3 | 2.96 GB | Tidak diketahui | very small, high quality loss |
100
+ | [komodo-7b-base-q4_0.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_0.gguf) | Q4_0 | 4 | 3.84 GB | Tidak diketahui | smaller, moderate quality loss |
101
+ | [komodo-7b-base-q4_1.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_1.gguf) | Q4_1 | 4 | 4.26 GB | Tidak diketahui | smaller, moderate quality loss |
102
+ | [komodo-7b-base-q4_k_m.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_k_m.gguf) | Q4_K_M | 4 | 4.1 GB | Tidak diketahui | smaller, moderate quality loss |
103
+ | [komodo-7b-base-q4_k_s.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_k_s.gguf) | Q4_K_S | 4 | 3.87 GB | Tidak diketahui | smaller, moderate quality loss |
104
+ | [komodo-7b-base-q5_0.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_0.gguf) | Q5_0 | 5 | 4.67 GB | Tidak diketahui | medium, balanced quality |
105
+ | [komodo-7b-base-q5_1.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_1.gguf) | Q5_1 | 5 | 5.08 GB | Tidak diketahui | medium, balanced quality |
106
+ | [komodo-7b-base-q5_k_m.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_k_m.gguf) | Q5_K_M | 5 | 4.8 GB | Tidak diketahui | medium, balanced quality |
107
+ | [komodo-7b-base-q5_k_s.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_k_s.gguf) | Q5_K_S | 5 | 4.67 GB | Tidak diketahui | medium, balanced quality |
108
+ | [komodo-7b-base-q6_k.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q6_k.gguf) | Q6_K | 6 | 5.55 GB | Tidak diketahui | larger, higher quality |
109
+ | [komodo-7b-base-q8_0.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q8_0.gguf) | Q8_0 | 8 | 7.19 GB | Tidak diketahui | largest, best quality |
110
+
111
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
112
+
113
+
114
+
115
+ <!-- README_GGUF.md-provided-files end -->
116
+
117
+ <!-- README_GGUF.md-how-to-download start -->
118
+ ## How to download GGUF files
119
+
120
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
121
+
122
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
123
+
124
+ * LM Studio
125
+ * LoLLMS Web UI
126
+ * Faraday.dev
127
+
128
+ ### In `text-generation-webui`
129
+
130
+ Under Download Model, you can enter the model repo: TheBloke/Mistral-7B-Instruct-v0.2-GGUF and below it, a specific filename to download, such as: komodo-7b-base-q4_0.gguf.
131
+
132
+ Then click Download.
133
+
134
+ ### On the command line, including multiple files at once
135
+
136
+ I recommend using the `huggingface-hub` Python library:
137
+
138
+ ```shell
139
+ pip3 install huggingface-hub
140
+ ```
141
+
142
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
143
+
144
+ ```shell
145
+ huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF komodo-7b-base-q4_0.gguf --local-dir . --local-dir-use-symlinks False
146
+ ```
147
+
148
+ <details>
149
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
150
+
151
+ You can also download multiple files at once with a pattern:
152
+
153
+ ```shell
154
+ huggingface-cli download Yellow-AI-NLP/komodo-7b-base --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
155
+ ```
156
+
157
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
158
+
159
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
160
+
161
+ ```shell
162
+ pip3 install hf_transfer
163
+ ```
164
+
165
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
166
+
167
+ ```shell
168
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Yellow-AI-NLP/komodo-7b-base komodo-7b-base-q4_0.gguf --local-dir . --local-dir-use-symlinks False
169
+ ```
170
+
171
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
172
+ </details>
173
+ <!-- README_GGUF.md-how-to-download end -->
174
+
175
+ <!-- README_GGUF.md-how-to-run start -->
176
+ ## Example `llama.cpp` command
177
+
178
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
179
+
180
+ ```shell
181
+ ./main -ngl 35 -m komodo-7b-base-q4_0.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"
182
+ ```
183
+
184
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
185
+
186
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
187
+
188
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
189
+
190
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
191
+
192
+ ## How to run in `text-generation-webui`
193
+
194
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
195
+
196
+ ## How to run from Python code
197
+
198
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
199
+
200
+ ### How to load this model in Python code, using llama-cpp-python
201
+
202
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
203
+
204
+ #### First install the package
205
+
206
+ Run one of the following commands, according to your system:
207
+
208
+ ```shell
209
+ # Base ctransformers with no GPU acceleration
210
+ pip install llama-cpp-python
211
+ # With NVidia CUDA acceleration
212
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
213
+ # Or with OpenBLAS acceleration
214
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
215
+ # Or with CLBLast acceleration
216
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
217
+ # Or with AMD ROCm GPU acceleration (Linux only)
218
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
219
+ # Or with Metal GPU acceleration for macOS systems only
220
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
221
+
222
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
223
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
224
+ pip install llama-cpp-python
225
+ ```
226
+
227
+ #### Simple llama-cpp-python example code
228
+
229
+ ```python
230
+ from llama_cpp import Llama
231
+
232
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
233
+ llm = Llama(
234
+ model_path="./komodo-7b-base-q4_0.gguf", # Download the model file first
235
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
236
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
237
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
238
+ )
239
+
240
+ # Simple inference example
241
+ output = llm(
242
+ "<s>[INST] {prompt} [/INST]", # Prompt
243
+ max_tokens=512, # Generate up to 512 tokens
244
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
245
+ echo=True # Whether to echo the prompt
246
+ )
247
+
248
+ # Chat Completion API
249
+
250
+ llm = Llama(model_path="./komodo-7b-base-q4_0.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
251
+ llm.create_chat_completion(
252
+ messages = [
253
+ {"role": "system", "content": "You are a story writing assistant."},
254
+ {
255
+ "role": "user",
256
+ "content": "Write a story about llamas."
257
+ }
258
+ ]
259
+ )
260
+ ```
261
+
262
+ ## How to use with LangChain
263
+
264
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
265
+
266
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
267
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
268
+
269
+ <!-- README_GGUF.md-how-to-run end -->
270
+
271
+ <!-- footer start -->
272
+ <!-- 200823 -->
273
+ ## Discord
274
+
275
+ For further support, and discussions on these models and AI in general, join us at:
276
+
277
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
278
+
279
+ ## Thanks, and how to contribute
280
+
281
+ Thanks to the [chirper.ai](https://chirper.ai) team!
282
+
283
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
284
+
285
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
286
+
287
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
288
+
289
+ <!-- footer end -->
290
+
291
+ <!-- original-model-card start -->
292
+
293
+
294
+ ## Instruction format
295
+
296
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
297
+
298
+ E.g.
299
+ ```
300
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
301
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
302
+ "[INST] Do you have mayonnaise recipes? [/INST]"
303
+ ```
304
+
305
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
306
+
307
+ ```python
308
+ pip install ctransformers
309
+
310
+ from ctransformers import AutoModelForCausalLM
311
+ llm1 = AutoModelForCausalLM.from_pretrained("ukung/komodo-7b-base-GGUF", model_file="komodo-7b-base-q4_0.gguf", model_type="llama", gpu_layers=50)
312
+ prompt="""jelaskan dengan detail apa itu self-attention?"""
313
+
314
+ for text in llm1(prompt, stream=True, max_new_tokens=2048, stop=["</s>", "<s>", "<|im_start|>", "<|im_end|>", "|im_end|>", "|im_end|", "<"]):
315
+ print(text, end='')
316
+ ```
317
+
318
+ ## Model Architecture
319
+ This instruction model is based on Llama2, a transformer model with the following architecture choices:
320
+ - Grouped-Query Attention
321
+ - Sliding-Window Attention
322
+ - Byte-fallback BPE tokenizer
323
+
324
+ ## Troubleshooting
325
+ - If you see the following error:
326
+ ```
327
+ Traceback (most recent call last):
328
+ File "", line 1, in
329
+ File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
330
+ config, kwargs = AutoConfig.from_pretrained(
331
+ File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
332
+ config_class = CONFIG_MAPPING[config_dict["model_type"]]
333
+ File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
334
+ raise KeyError(key)
335
+ KeyError: 'llama'
336
+ ```
337
+
338
+ Installing transformers from source should solve the issue
339
+ pip install git+https://github.com/huggingface/transformers
340
+
341
+ This should not be required after transformers-v4.33.4.
342
+
343
+ ## Limitations
344
+
345
+ The model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
346
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
347
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
348
+
349
+ ## The AI Team
350
+
351
+ UkungZulfah@gmail.com
352
+
353
+ <!-- original-model-card end -->