library_name: transformers | |
base_model: medicalai/ClinicalBERT | |
tags: | |
- generated_from_trainer | |
metrics: | |
- accuracy | |
- precision | |
- recall | |
- f1 | |
model-index: | |
- name: results | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# results | |
This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.8614 | |
- Accuracy: 0.6145 | |
- Precision: 0.6243 | |
- Recall: 0.6145 | |
- F1: 0.5971 | |
- Roc Auc: 0.8073 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments | |
- lr_scheduler_type: linear | |
- num_epochs: 5 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | |
| No log | 1.0 | 42 | 1.0433 | 0.4458 | 0.4351 | 0.4458 | 0.3685 | 0.7162 | | |
| No log | 2.0 | 84 | 0.8946 | 0.5663 | 0.5641 | 0.5663 | 0.5559 | 0.7823 | | |
| No log | 3.0 | 126 | 0.9142 | 0.5783 | 0.6385 | 0.5783 | 0.5332 | 0.7896 | | |
| No log | 4.0 | 168 | 0.8497 | 0.6386 | 0.6434 | 0.6386 | 0.6299 | 0.8084 | | |
| No log | 5.0 | 210 | 0.8614 | 0.6145 | 0.6243 | 0.6145 | 0.5971 | 0.8073 | | |
### Framework versions | |
- Transformers 4.46.3 | |
- Pytorch 2.5.1+cu121 | |
- Datasets 2.14.5 | |
- Tokenizers 0.20.3 | |