uisikdag commited on
Commit
6038363
1 Parent(s): 51bb5e6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: weeds_convnext_balanced
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: test
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9333333333333333
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # weeds_convnext_balanced
31
+
32
+ This model is a fine-tuned version of [facebook/convnext-large-224](https://huggingface.co/facebook/convnext-large-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1931
35
+ - Accuracy: 0.9333
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 4
56
+ - eval_batch_size: 4
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 16
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.0584 | 1.0 | 150 | 1.9386 | 0.6 |
70
+ | 0.7729 | 2.0 | 300 | 0.6873 | 0.8733 |
71
+ | 0.4394 | 3.0 | 450 | 0.4321 | 0.89 |
72
+ | 0.3337 | 4.0 | 600 | 0.3227 | 0.9 |
73
+ | 0.2489 | 5.0 | 750 | 0.2320 | 0.9267 |
74
+ | 0.1998 | 6.0 | 900 | 0.2556 | 0.9233 |
75
+ | 0.1994 | 7.0 | 1050 | 0.2538 | 0.92 |
76
+ | 0.1573 | 8.0 | 1200 | 0.2224 | 0.9333 |
77
+ | 0.143 | 9.0 | 1350 | 0.1495 | 0.96 |
78
+ | 0.0686 | 10.0 | 1500 | 0.1931 | 0.9333 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.27.4
84
+ - Pytorch 2.0.0
85
+ - Datasets 2.11.0
86
+ - Tokenizers 0.11.0