uisikdag commited on
Commit
2f4d571
1 Parent(s): 8edae38

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: weeds_hfclass12
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: test
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.96
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # weeds_hfclass12
31
+
32
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1257
35
+ - Accuracy: 0.96
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.6013 | 0.99 | 37 | 0.7579 | 0.8067 |
70
+ | 0.3887 | 1.99 | 74 | 0.2834 | 0.9033 |
71
+ | 0.2846 | 2.99 | 111 | 0.2767 | 0.9 |
72
+ | 0.2086 | 3.99 | 148 | 0.2642 | 0.9067 |
73
+ | 0.1664 | 4.99 | 185 | 0.2016 | 0.9333 |
74
+ | 0.168 | 5.99 | 222 | 0.1498 | 0.9533 |
75
+ | 0.1159 | 6.99 | 259 | 0.1607 | 0.9533 |
76
+ | 0.1195 | 7.99 | 296 | 0.1719 | 0.9467 |
77
+ | 0.1013 | 8.99 | 333 | 0.1442 | 0.9533 |
78
+ | 0.0939 | 9.99 | 370 | 0.1257 | 0.96 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.26.1
84
+ - Pytorch 1.13.1+cu117
85
+ - Datasets 2.10.1
86
+ - Tokenizers 0.13.2