ui-chope's picture
update model card README.md
f16d3d4
|
raw
history blame
2.85 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results: []

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1040
  • Precision: 0.9760
  • Recall: 0.9707
  • F1: 0.9733
  • Accuracy: 0.9825

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1497 1.0 4211 0.2500 0.8891 0.9142 0.9015 0.9319
0.0931 2.0 8422 0.1863 0.9296 0.9457 0.9376 0.9566
0.0583 3.0 12633 0.1546 0.9531 0.9490 0.9510 0.9658
0.035 4.0 16844 0.1834 0.9503 0.9544 0.9523 0.9628
0.0235 5.0 21055 0.1341 0.9528 0.9642 0.9584 0.9735
0.0161 6.0 25266 0.1647 0.9565 0.9544 0.9554 0.9687
0.0144 7.0 29477 0.1024 0.9694 0.9620 0.9657 0.9807
0.0116 8.0 33688 0.1290 0.9630 0.9620 0.9625 0.9769
0.0067 9.0 37899 0.1020 0.9716 0.9663 0.9690 0.9800
0.0042 10.0 42110 0.1298 0.9547 0.9620 0.9584 0.9728
0.0045 11.0 46321 0.1398 0.9675 0.9685 0.9680 0.9800
0.0024 12.0 50532 0.1176 0.9707 0.9707 0.9707 0.9789
0.0024 13.0 54743 0.0995 0.9717 0.9696 0.9707 0.9823
0.0011 14.0 58954 0.1071 0.9749 0.9685 0.9717 0.9818
0.0015 15.0 63165 0.1040 0.9760 0.9707 0.9733 0.9825

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.3