metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results: []
distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1040
- Precision: 0.9760
- Recall: 0.9707
- F1: 0.9733
- Accuracy: 0.9825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1497 | 1.0 | 4211 | 0.2500 | 0.8891 | 0.9142 | 0.9015 | 0.9319 |
0.0931 | 2.0 | 8422 | 0.1863 | 0.9296 | 0.9457 | 0.9376 | 0.9566 |
0.0583 | 3.0 | 12633 | 0.1546 | 0.9531 | 0.9490 | 0.9510 | 0.9658 |
0.035 | 4.0 | 16844 | 0.1834 | 0.9503 | 0.9544 | 0.9523 | 0.9628 |
0.0235 | 5.0 | 21055 | 0.1341 | 0.9528 | 0.9642 | 0.9584 | 0.9735 |
0.0161 | 6.0 | 25266 | 0.1647 | 0.9565 | 0.9544 | 0.9554 | 0.9687 |
0.0144 | 7.0 | 29477 | 0.1024 | 0.9694 | 0.9620 | 0.9657 | 0.9807 |
0.0116 | 8.0 | 33688 | 0.1290 | 0.9630 | 0.9620 | 0.9625 | 0.9769 |
0.0067 | 9.0 | 37899 | 0.1020 | 0.9716 | 0.9663 | 0.9690 | 0.9800 |
0.0042 | 10.0 | 42110 | 0.1298 | 0.9547 | 0.9620 | 0.9584 | 0.9728 |
0.0045 | 11.0 | 46321 | 0.1398 | 0.9675 | 0.9685 | 0.9680 | 0.9800 |
0.0024 | 12.0 | 50532 | 0.1176 | 0.9707 | 0.9707 | 0.9707 | 0.9789 |
0.0024 | 13.0 | 54743 | 0.0995 | 0.9717 | 0.9696 | 0.9707 | 0.9823 |
0.0011 | 14.0 | 58954 | 0.1071 | 0.9749 | 0.9685 | 0.9717 | 0.9818 |
0.0015 | 15.0 | 63165 | 0.1040 | 0.9760 | 0.9707 | 0.9733 | 0.9825 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3