Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,16 @@
|
|
2 |
license: llama2
|
3 |
language:
|
4 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
# DAMA
|
7 |
|
@@ -19,7 +29,7 @@ For adaptation, we used **D**ebiasing **A**lgorithm through **M**odel **A**dapta
|
|
19 |
|
20 |
|
21 |
- **Developed by:** Tomasz Limisiewicz, David Mareček, Tomáš Musil
|
22 |
-
- **Funded by:** Grant Agency Czech Republic
|
23 |
- **Language(s) (NLP):** English
|
24 |
- **Adapted from model:** LLaMA
|
25 |
|
@@ -43,9 +53,9 @@ For adaptation, we used **D**ebiasing **A**lgorithm through **M**odel **A**dapta
|
|
43 |
|
44 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
45 |
|
46 |
-
|
47 |
-
It is better suited for generating and processing texts in sensitive domains.
|
48 |
-
|
49 |
|
50 |
|
51 |
|
@@ -82,7 +92,7 @@ Moreover, we provide the scores for two established bias benchmarks: **WinoBias*
|
|
82 |
### Results
|
83 |
|
84 |
|
85 |
-
|
86 |
|--------------------------------------------------------------------|--------|-------|--------|--------|-----------|-----------|------|-----------|------|
|
87 |
| | `a_s` | `a_f` | `b` | Acc | `Delta S` | `Delta G` | lms | ss | ICAT |
|
88 |
| LLaMA 7B | 0.235 | 0.320 | 0.072 | 59.1\% | 40.3\% | 3.0\% | 95.5 | 71.9 | 53.7 |
|
@@ -93,12 +103,13 @@ Moreover, we provide the scores for two established bias benchmarks: **WinoBias*
|
|
93 |
| DAMA 33B | 0.105 | 0.172 | 0.059 | 63.7\% | 26.7\% | -3.7\% | 94.8 | 65.7 | 65.0 |
|
94 |
| LLaMA 65B | 0.249 | 0.316 | 0.095 | 73.3\% | 35.7\% | 1.4\% | 94.9 | 69.5 | 57.9 |
|
95 |
| DAMA 65B | 0.185 | 0.251 | 0.100 | 71.1\% | 27.2\% | 0.8\% | 92.8 | 67.1 | 61.1 |
|
96 |
-
|
|
|
97 |
|
98 |
|
99 |
### Performance Evaluation
|
100 |
|
101 |
-
To check the effect of debiasing on LM capabilities, we compute perplexity on Wikipedia corpus
|
102 |
We also test performance on four language understanding end-tasks: **OpenBookQA**, **AI2 Reasoning Challenge** (Easy and Chalange Sets), and **Massive Multitask Language Understanding**.
|
103 |
|
104 |
|
@@ -115,7 +126,7 @@ We also test performance on four language understanding end-tasks: **OpenBookQA*
|
|
115 |
| LLaMA 65B | 19.5 | 44.5 | 73.9 | 59.6 | ---* |
|
116 |
| DAMA 65B | 20.1 | 40.5 | 67.7 | 57.2 | --- * |
|
117 |
|
118 |
-
Performance evaluation for the
|
119 |
Due to hardware limitations, we could not run MMLU inference for 65B models.
|
120 |
In the evaluation of 33B model, we excluded 4\% longest prompts.
|
121 |
|
@@ -123,9 +134,10 @@ In the evaluation of 33B model, we excluded 4\% longest prompts.
|
|
123 |
|
124 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
125 |
|
|
|
126 |
**BibTeX:**
|
127 |
|
128 |
-
```
|
129 |
@inproceedings{
|
130 |
limisiewicz2024debiasing,
|
131 |
title={Debiasing Algorithm through Model Adaptation},
|
@@ -136,6 +148,11 @@ url={https://openreview.net/forum?id=XIZEFyVGC9}
|
|
136 |
}
|
137 |
```
|
138 |
|
|
|
|
|
|
|
|
|
|
|
139 |
## Model Card Author
|
140 |
|
141 |
[Tomasz Limisiewicz](mailto:limisewicz@ufal.mff.cuni.cz)
|
|
|
2 |
license: llama2
|
3 |
language:
|
4 |
- en
|
5 |
+
datasets:
|
6 |
+
- McGill-NLP/stereoset
|
7 |
+
- wino_bias
|
8 |
+
- wikitext
|
9 |
+
- allenai/ai2_arc
|
10 |
+
- allenai/openbookqa
|
11 |
+
- cais/mmlu
|
12 |
+
metrics:
|
13 |
+
- perplexity
|
14 |
+
- accuracy
|
15 |
---
|
16 |
# DAMA
|
17 |
|
|
|
29 |
|
30 |
|
31 |
- **Developed by:** Tomasz Limisiewicz, David Mareček, Tomáš Musil
|
32 |
+
- **Funded by:** Grant Agency of Czech Republic
|
33 |
- **Language(s) (NLP):** English
|
34 |
- **Adapted from model:** LLaMA
|
35 |
|
|
|
53 |
|
54 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
55 |
|
56 |
+
DAMA mitigates the gender bias of the original model.
|
57 |
+
It is better suited for generating and processing texts in sensitive domains, such as hiring, social services, or professional counseling.
|
58 |
+
Still, we recommend caution for such use cases because bias is not entirely erased (the same as in any other currently available method).
|
59 |
|
60 |
|
61 |
|
|
|
92 |
### Results
|
93 |
|
94 |
|
95 |
+
|| Bias in LM ||| WinoBias ||| Stereoset |||
|
96 |
|--------------------------------------------------------------------|--------|-------|--------|--------|-----------|-----------|------|-----------|------|
|
97 |
| | `a_s` | `a_f` | `b` | Acc | `Delta S` | `Delta G` | lms | ss | ICAT |
|
98 |
| LLaMA 7B | 0.235 | 0.320 | 0.072 | 59.1\% | 40.3\% | 3.0\% | 95.5 | 71.9 | 53.7 |
|
|
|
103 |
| DAMA 33B | 0.105 | 0.172 | 0.059 | 63.7\% | 26.7\% | -3.7\% | 94.8 | 65.7 | 65.0 |
|
104 |
| LLaMA 65B | 0.249 | 0.316 | 0.095 | 73.3\% | 35.7\% | 1.4\% | 94.9 | 69.5 | 57.9 |
|
105 |
| DAMA 65B | 0.185 | 0.251 | 0.100 | 71.1\% | 27.2\% | 0.8\% | 92.8 | 67.1 | 61.1 |
|
106 |
+
|
107 |
+
Bias evaluation for the LLaMA models and their debiased instances.
|
108 |
|
109 |
|
110 |
### Performance Evaluation
|
111 |
|
112 |
+
To check the effect of debiasing on LM capabilities, we compute perplexity on **Wikipedia corpus**.
|
113 |
We also test performance on four language understanding end-tasks: **OpenBookQA**, **AI2 Reasoning Challenge** (Easy and Chalange Sets), and **Massive Multitask Language Understanding**.
|
114 |
|
115 |
|
|
|
126 |
| LLaMA 65B | 19.5 | 44.5 | 73.9 | 59.6 | ---* |
|
127 |
| DAMA 65B | 20.1 | 40.5 | 67.7 | 57.2 | --- * |
|
128 |
|
129 |
+
Performance evaluation for the LLaMA models and their debiased instances.
|
130 |
Due to hardware limitations, we could not run MMLU inference for 65B models.
|
131 |
In the evaluation of 33B model, we excluded 4\% longest prompts.
|
132 |
|
|
|
134 |
|
135 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
136 |
|
137 |
+
|
138 |
**BibTeX:**
|
139 |
|
140 |
+
```bibtex
|
141 |
@inproceedings{
|
142 |
limisiewicz2024debiasing,
|
143 |
title={Debiasing Algorithm through Model Adaptation},
|
|
|
148 |
}
|
149 |
```
|
150 |
|
151 |
+
**APA:**
|
152 |
+
|
153 |
+
Limisiewicz, T., Mareček, D., & Musil, T. (2024). Debiasing Algorithm through Model Adaptation. The Twelfth International Conference on Learning Representations.
|
154 |
+
|
155 |
+
|
156 |
## Model Card Author
|
157 |
|
158 |
[Tomasz Limisiewicz](mailto:limisewicz@ufal.mff.cuni.cz)
|