Update README.md
Browse files
README.md
CHANGED
@@ -30,16 +30,16 @@ Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2
|
|
30 |
|
31 |
| Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) |
|
32 |
| -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: |
|
33 |
-
| RoBERTa-Tiny(char) | 72.3
|
34 |
-
| **RoBERTa-Tiny(word)** | **74.3(+2.0)** | **86.4** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** |
|
35 |
-
| RoBERTa-Mini(char) | 75.7
|
36 |
-
| **RoBERTa-Mini(word)** | **76.7(+1.0)** | **87.6** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** |
|
37 |
-
| RoBERTa-Small(char) | 76.8
|
38 |
-
| **RoBERTa-Small(word)** | **78.1(+1.3)** | **88.5** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** |
|
39 |
-
| RoBERTa-Medium(char) | 77.8
|
40 |
-
| **RoBERTa-Medium(word)** | **78.9(+1.1)** | **89.2** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** |
|
41 |
-
| RoBERTa-Base(char) | 79.5
|
42 |
-
| **RoBERTa-Base(word)** | **80.2(+0.7)** | **90.3** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** |
|
43 |
|
44 |
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128:
|
45 |
|
@@ -138,51 +138,51 @@ Taking the case of word-based RoBERTa-Medium
|
|
138 |
Stage1:
|
139 |
|
140 |
```
|
141 |
-
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt
|
142 |
-
--spm_model_path models/cluecorpussmall_spm.model
|
143 |
-
--dataset_path cluecorpussmall_word_seq128_dataset.pt
|
144 |
-
--processes_num 32 --seq_length 128
|
145 |
--dynamic_masking --target mlm
|
146 |
```
|
147 |
|
148 |
```
|
149 |
-
python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt
|
150 |
-
--spm_model_path models/cluecorpussmall_spm.model
|
151 |
-
--config_path models/bert/medium_config.json
|
152 |
-
--output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin
|
153 |
-
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7
|
154 |
-
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000
|
155 |
-
--learning_rate 1e-4 --batch_size 64
|
156 |
--embedding word_pos_seg --encoder transformer --mask fully_visible --target mlm --tie_weights
|
157 |
```
|
158 |
|
159 |
Stage2:
|
160 |
|
161 |
```
|
162 |
-
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt
|
163 |
-
--spm_model_path models/cluecorpussmall_spm.model
|
164 |
-
--dataset_path cluecorpussmall_word_seq512_dataset.pt
|
165 |
-
--processes_num 32 --seq_length 512
|
166 |
--dynamic_masking --target mlm
|
167 |
```
|
168 |
|
169 |
```
|
170 |
-
python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt
|
171 |
-
--pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000
|
172 |
-
--spm_model_path models/cluecorpussmall_spm.model
|
173 |
-
--config_path models/bert/medium_config.json
|
174 |
-
--output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin
|
175 |
-
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7
|
176 |
-
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000
|
177 |
-
--learning_rate 5e-5 --batch_size 16
|
178 |
--embedding word_pos_seg --encoder transformer --mask fully_visible --target mlm --tie_weights
|
179 |
```
|
180 |
|
181 |
Finally, we convert the pre-trained model into Huggingface's format:
|
182 |
|
183 |
```
|
184 |
-
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-250000
|
185 |
-
--output_model_path pytorch_model.bin
|
186 |
--layers_num 12 --target mlm
|
187 |
```
|
188 |
|
|
|
30 |
|
31 |
| Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) |
|
32 |
| -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: |
|
33 |
+
| RoBERTa-Tiny (char) | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 |
|
34 |
+
| **RoBERTa-Tiny (word)** | **74.3 (+2.0)** | **86.4** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** |
|
35 |
+
| RoBERTa-Mini (char) | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 |
|
36 |
+
| **RoBERTa-Mini (word)** | **76.7 (+1.0)** | **87.6** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** |
|
37 |
+
| RoBERTa-Small (char) | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 |
|
38 |
+
| **RoBERTa-Small (word)** | **78.1 (+1.3)** | **88.5** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** |
|
39 |
+
| RoBERTa-Medium (char) | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 |
|
40 |
+
| **RoBERTa-Medium (word)** | **78.9 (+1.1)** | **89.2** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** |
|
41 |
+
| RoBERTa-Base (char) | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 |
|
42 |
+
| **RoBERTa-Base (word)** | **80.2 (+0.7)** | **90.3** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** |
|
43 |
|
44 |
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128:
|
45 |
|
|
|
138 |
Stage1:
|
139 |
|
140 |
```
|
141 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
142 |
+
--spm_model_path models/cluecorpussmall_spm.model \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
143 |
+
--dataset_path cluecorpussmall_word_seq128_dataset.pt \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
144 |
+
--processes_num 32 --seq_length 128 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
145 |
--dynamic_masking --target mlm
|
146 |
```
|
147 |
|
148 |
```
|
149 |
+
python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
150 |
+
--spm_model_path models/cluecorpussmall_spm.model \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
151 |
+
--config_path models/bert/medium_config.json \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
152 |
+
--output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
153 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
154 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
155 |
+
--learning_rate 1e-4 --batch_size 64 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
156 |
--embedding word_pos_seg --encoder transformer --mask fully_visible --target mlm --tie_weights
|
157 |
```
|
158 |
|
159 |
Stage2:
|
160 |
|
161 |
```
|
162 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
163 |
+
--spm_model_path models/cluecorpussmall_spm.model \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
164 |
+
--dataset_path cluecorpussmall_word_seq512_dataset.pt \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
165 |
+
--processes_num 32 --seq_length 512 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
166 |
--dynamic_masking --target mlm
|
167 |
```
|
168 |
|
169 |
```
|
170 |
+
python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
171 |
+
--pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
172 |
+
--spm_model_path models/cluecorpussmall_spm.model \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
173 |
+
--config_path models/bert/medium_config.json \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
174 |
+
--output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
175 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
176 |
+
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
177 |
+
--learning_rate 5e-5 --batch_size 16 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
178 |
--embedding word_pos_seg --encoder transformer --mask fully_visible --target mlm --tie_weights
|
179 |
```
|
180 |
|
181 |
Finally, we convert the pre-trained model into Huggingface's format:
|
182 |
|
183 |
```
|
184 |
+
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-250000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
185 |
+
--output_model_path pytorch_model.bin \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
186 |
--layers_num 12 --target mlm
|
187 |
```
|
188 |
|