Update README.md
Browse files
README.md
CHANGED
@@ -30,18 +30,18 @@ You can download the 5 Chinese RoBERTa miniatures either from the [UER-py Modelz
|
|
30 |
|
31 |
Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2_H-128), word-based models achieve better results in most cases. Here are scores on the devlopment set of six Chinese tasks:
|
32 |
|
33 |
-
| Model | Score |
|
34 |
| -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: |
|
35 |
-
| RoBERTa-Tiny(char) | 72.3 | 83.
|
36 |
-
| **RoBERTa-Tiny(word)** | **74.
|
37 |
-
| RoBERTa-Mini(char) | 75.
|
38 |
-
| **RoBERTa-Mini(word)** | **76.
|
39 |
-
| RoBERTa-Small(char) | 76.
|
40 |
-
| **RoBERTa-Small(word)** | **78.
|
41 |
-
| RoBERTa-Medium(char) |
|
42 |
-
| **RoBERTa-Medium(word)** | **
|
43 |
-
| RoBERTa-Base(char) | 79.
|
44 |
-
| **RoBERTa-Base(word)** | **80.
|
45 |
|
46 |
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128:
|
47 |
|
|
|
30 |
|
31 |
Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2_H-128), word-based models achieve better results in most cases. Here are scores on the devlopment set of six Chinese tasks:
|
32 |
|
33 |
+
| Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) |
|
34 |
| -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: |
|
35 |
+
| RoBERTa-Tiny(char) | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 |
|
36 |
+
| **RoBERTa-Tiny(word)** | **74.4(+2.1)** | **86.7** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** |
|
37 |
+
| RoBERTa-Mini(char) | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 |
|
38 |
+
| **RoBERTa-Mini(word)** | **76.9(+1.0)** | **88.5** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** |
|
39 |
+
| RoBERTa-Small(char) | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 |
|
40 |
+
| **RoBERTa-Small(word)** | **78.4(+1.5)** | **89.7** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** |
|
41 |
+
| RoBERTa-Medium(char) | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 |
|
42 |
+
| **RoBERTa-Medium(word)** | **79.1(+1.1)** | **90.0** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** |
|
43 |
+
| RoBERTa-Base(char) | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 |
|
44 |
+
| **RoBERTa-Base(word)** | **80.4(+0.7)** | **91.1** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** |
|
45 |
|
46 |
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128:
|
47 |
|