uer commited on
Commit
09d56e6
1 Parent(s): 3cc2614

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +101 -0
  2. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: zh
3
+ datasets: CLUECorpusSmall
4
+ widget:
5
+ - text: "米饭是一种用稻米与水煮成的食物"
6
+
7
+
8
+ ---
9
+
10
+
11
+ # Chinese GPT2-distil Model
12
+
13
+ ## Model description
14
+
15
+ The model is used to generate Chinese texts. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-distil-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-distil-chinese-cluecorpussmall). The model is called GPT2-distil because the configuration of model follows [distilgpt2](https://huggingface.co/distilgpt2), which has 6 layers, 768 dimension, and 12 heads. The pre-training does not involve the supervision of larger models.
16
+
17
+ ## How to use
18
+
19
+ You can use the model directly with a pipeline for text generation:
20
+
21
+ ```python
22
+ >>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
23
+ >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
24
+ >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
25
+ >>> text_generator = TextGenerationPipeline(model, tokenizer)
26
+ >>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
27
+ [{'generated_text': '这是很久之前的事情了 。 我 现 在 想 起 来 就 让 自 己 很 伤 心 , 很 失 望 。 我 现 在 想 到 , 我 觉 得 大 多 数 人 的 生 活 比 我 的 生 命 还 要 重 要 , 对 一 些 事 情 的 看 法 , 对 一 些 人 的 看 法 , 都 是 在 发 泄 。 但 是 , 我 们 的 生 活 是 需 要 一 个 信 用 体 系 的 。 我 不 知'}]
28
+ ```
29
+
30
+ ## Training data
31
+
32
+ [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
33
+
34
+ ## Training procedure
35
+
36
+ The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 1024.
37
+
38
+ Stage1:
39
+
40
+ ```
41
+ python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
42
+ --vocab_path models/google_zh_vocab.txt \
43
+ --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
44
+ --seq_length 128 --processes_num 32 --data_processor lm
45
+ ```
46
+
47
+ ```
48
+ python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
49
+ --vocab_path models/google_zh_vocab.txt \
50
+ --config_path models/gpt2/distil_config.json \
51
+ --output_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin \
52
+ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
53
+ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
54
+ --learning_rate 1e-4 --batch_size 64
55
+ ```
56
+
57
+ Stage2:
58
+
59
+ ```
60
+ python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
61
+ --vocab_path models/google_zh_vocab.txt \
62
+ --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
63
+ --seq_length 1024 --processes_num 32 --data_processor lm
64
+ ```
65
+
66
+ ```
67
+ python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
68
+ --vocab_path models/google_zh_vocab.txt \
69
+ --pretrained_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin-1000000 \
70
+ --config_path models/gpt2/distil_config.json \
71
+ --output_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin \
72
+ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
73
+ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
74
+ --learning_rate 5e-5 --batch_size 16
75
+ ```
76
+
77
+ Finally, we convert the pre-trained model into Huggingface's format:
78
+
79
+ ```
80
+ python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path cluecorpussmall_gpt2_distil_seq1024_model.bin-250000 \
81
+ --output_model_path pytorch_model.bin \
82
+ --layers_num 6
83
+ ```
84
+
85
+ ### BibTeX entry and citation info
86
+
87
+ ```
88
+ @article{radford2019language,
89
+ title={Language Models are Unsupervised Multitask Learners},
90
+ author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
91
+ year={2019}
92
+ }
93
+
94
+ @article{zhao2019uer,
95
+ title={UER: An Open-Source Toolkit for Pre-training Models},
96
+ author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
97
+ journal={EMNLP-IJCNLP 2019},
98
+ pages={241},
99
+ year={2019}
100
+ }
101
+ ```
vocab.txt ADDED
The diff for this file is too large to render. See raw diff