Update README.md
Browse files
README.md
CHANGED
@@ -12,11 +12,11 @@ widget:
|
|
12 |
|
13 |
## Model description
|
14 |
|
15 |
-
This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658).
|
16 |
|
17 |
[Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details.
|
18 |
|
19 |
-
You can download the 24 Chinese RoBERTa miniatures either from the [UER-py
|
20 |
|
21 |
| | H=128 | H=256 | H=512 | H=768 |
|
22 |
| -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: |
|
@@ -103,7 +103,7 @@ output = model(encoded_input)
|
|
103 |
|
104 |
## Training procedure
|
105 |
|
106 |
-
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud
|
107 |
|
108 |
Taking the case of RoBERTa-Medium
|
109 |
|
@@ -153,7 +153,7 @@ python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \
|
|
153 |
Finally, we convert the pre-trained model into Huggingface's format:
|
154 |
|
155 |
```
|
156 |
-
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \
|
157 |
--output_model_path pytorch_model.bin \
|
158 |
--layers_num 8 --target mlm
|
159 |
```
|
|
|
12 |
|
13 |
## Model description
|
14 |
|
15 |
+
This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658).
|
16 |
|
17 |
[Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details.
|
18 |
|
19 |
+
You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below:
|
20 |
|
21 |
| | H=128 | H=256 | H=512 | H=768 |
|
22 |
| -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: |
|
|
|
103 |
|
104 |
## Training procedure
|
105 |
|
106 |
+
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
|
107 |
|
108 |
Taking the case of RoBERTa-Medium
|
109 |
|
|
|
153 |
Finally, we convert the pre-trained model into Huggingface's format:
|
154 |
|
155 |
```
|
156 |
+
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \
|
157 |
--output_model_path pytorch_model.bin \
|
158 |
--layers_num 8 --target mlm
|
159 |
```
|