hhou435 commited on
Commit
64d7d26
·
1 Parent(s): 4ec88d0

First version of the chinese_roberta_L-2_H-128 model and tokenizer.

Browse files
Files changed (1) hide show
  1. README.md +67 -44
README.md CHANGED
@@ -1,67 +1,83 @@
1
  ---
2
  language: Chinese
3
- datasets: CLUECorpus
4
  widget:
5
  - text: "北京是[MASK]国的首都。"
6
-
7
  ---
8
 
 
9
  # Chinese RoBERTa Miniatures
10
 
11
  ## Model description
12
 
13
  This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://www.aclweb.org/anthology/D19-3041.pdf).
14
 
 
 
15
  You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below:
16
 
17
  | |H=128|H=256|H=512|H=768|
18
  |---|:---:|:---:|:---:|:---:|
19
  | **L=2** |[**2/128 (Tiny)**][2_128]|[2/256]|[2/512]|[2/768]|
20
- | **L=4** |[4/128]|[**4/256 (Mini)**]|[**4/512 (Small)**]|[4/768]|
21
  | **L=6** |[6/128]|[6/256]|[6/512]|[6/768]|
22
- | **L=8** |[8/128]|[8/256]|[**8/512 (Medium)**]|[8/768]|
23
  | **L=10** |[10/128]|[10/256]|[10/512]|[10/768]|
24
- | **L=12** |[12/128]|[12/256]|[12/512]|[**12/768 (Base)**]|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## How to use
27
 
28
- You can use this model directly with a pipeline for masked language modeling:
29
 
30
  ```python
31
  >>> from transformers import pipeline
32
- >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-2_H-128')
33
  >>> unmasker("中国的首都是[MASK]京。")
34
  [
35
- {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]',
36
- 'score': 0.9197361469268799,
37
  'token': 1266,
38
  'token_str': '北'},
39
  {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]',
40
- 'score': 0.03562437742948532,
41
- 'token': 1298,
42
- 'token_str': '南'},
43
- {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]',
44
- 'score': 0.017404623329639435,
45
  'token': 691,
46
- 'token_str': '东'},
47
- {'sequence': '[CLS] 中 国 的 首 都 是 京 。 [SEP]',
48
- 'score': 0.006503210868686438,
49
- 'token': 5868,
50
- 'token_str': ''},
51
- {'sequence': '[CLS] 中 国 的 首 都 是 京 。 [SEP]',
52
- 'score': 0.0033314127940684557,
53
- 'token': 3173,
54
- 'token_str': ''}
55
  ]
56
-
57
  ```
58
 
59
  Here is how to use this model to get the features of a given text in PyTorch:
60
 
61
  ```python
62
  from transformers import BertTokenizer, BertModel
63
- tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-2_H-128')
64
- model = BertModel.from_pretrained("uer/chinese_roberta_L-2_H-128")
65
  text = "用你喜欢的任何文本替换我。"
66
  encoded_input = tokenizer(text, return_tensors='pt')
67
  output = model(**encoded_input)
@@ -71,57 +87,59 @@ and in TensorFlow:
71
 
72
  ```python
73
  from transformers import BertTokenizer, TFBertModel
74
- tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-2_H-128')
75
- model = TFBertModel.from_pretrained("uer/chinese_roberta_L-2_H-128")
76
  text = "用你喜欢的任何文本替换我。"
77
  encoded_input = tokenizer(text, return_tensors='tf')
78
  output = model(encoded_input)
79
  ```
80
 
81
-
82
-
83
  ## Training data
84
 
85
- CLUECorpus2020 and CLUECorpusSmall are used as training data.
86
 
87
  ## Training procedure
88
 
89
  Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512.
90
 
 
 
 
91
  ```
92
- python3 preprocess.py --corpus_path corpora/cluecorpus.txt \
93
  --vocab_path models/google_zh_vocab.txt \
94
- --dataset_path cluecorpus_seq128_dataset.pt \
95
  --processes_num 32 --seq_length 128 \
96
  --dynamic_masking --target mlm
97
  ```
98
  ```
99
- python3 pretrain.py --dataset_path cluecorpus_seq128_dataset.pt \
100
  --vocab_path models/google_zh_vocab.txt \
101
- --config_path models/bert_tiny_config.json \
102
- --output_model_path models/cluecorpus_roberta_tiny_seq128_model.bin \
103
  --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
104
  --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
105
  --learning_rate 1e-4 --batch_size 64 \
106
- --tie_weights --encoder bert --target mlm
107
  ```
 
108
  ```
109
- python3 preprocess.py --corpus_path corpora/cluecorpus.txt \
110
  --vocab_path models/google_zh_vocab.txt \
111
- --dataset_path cluecorpus_seq512_dataset.pt \
112
  --processes_num 32 --seq_length 512 \
113
  --dynamic_masking --target mlm
114
  ```
115
  ```
116
- python3 pretrain.py --dataset_path cluecorpus_seq512_dataset.pt \
117
- --pretrained_model_path models/cluecorpus_roberta_tiny_seq128_model.bin-1000000 \
118
  --vocab_path models/google_zh_vocab.txt \
119
- --config_path models/bert_tiny_config.json \
120
- --output_model_path models/cluecorpus_roberta_tiny_seq512_model.bin \
121
  --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
122
  --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
123
  --learning_rate 5e-5 --batch_size 16 \
124
- --tie_weights --encoder bert --target mlm
125
  ```
126
 
127
  ### BibTeX entry and citation info
@@ -137,3 +155,8 @@ python3 pretrain.py --dataset_path cluecorpus_seq512_dataset.pt \
137
  ```
138
 
139
  [2_128]: https://huggingface.co/uer/chinese_roberta_L-2_H-128
 
 
 
 
 
 
1
  ---
2
  language: Chinese
3
+ datasets: CLUECorpusSmall
4
  widget:
5
  - text: "北京是[MASK]国的首都。"
 
6
  ---
7
 
8
+
9
  # Chinese RoBERTa Miniatures
10
 
11
  ## Model description
12
 
13
  This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://www.aclweb.org/anthology/D19-3041.pdf).
14
 
15
+ [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details.
16
+
17
  You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below:
18
 
19
  | |H=128|H=256|H=512|H=768|
20
  |---|:---:|:---:|:---:|:---:|
21
  | **L=2** |[**2/128 (Tiny)**][2_128]|[2/256]|[2/512]|[2/768]|
22
+ | **L=4** |[4/128]|[**4/256 (Mini)**][4_256]|[**4/512 (Small)**][4_512]|[4/768]|
23
  | **L=6** |[6/128]|[6/256]|[6/512]|[6/768]|
24
+ | **L=8** |[8/128]|[8/256]|[**8/512 (Medium)**][8_512]|[8/768]|
25
  | **L=10** |[10/128]|[10/256]|[10/512]|[10/768]|
26
+ | **L=12** |[12/128]|[12/256]|[12/512]|[**12/768 (Base)**][12_768]|
27
+
28
+ Here are scores on the devlopment set of six Chinese tasks:
29
+
30
+ |Model|Score|douban|chnsenticorp|lcqmc|tnews(CLUE)|iflytek(CLUE)|ocnli(CLUE)|
31
+ |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
32
+ |RoBERTa-Tiny|72.3|83.0|91.4|81.8|62.0|55.0|60.3|
33
+ |RoBERTa-Mini|75.7|84.8|93.7|86.1|63.9|58.3|67.4|
34
+ |RoBERTa-Small|76.8|86.5|93.4|86.5|65.1|59.4|69.7|
35
+ |RoBERTa-Medium|77.8|87.6|94.8|88.1|65.6|59.5|71.2|
36
+ |RoBERTa-Base|79.5|89.1|95.2|89.2|67.0|60.9|75.5|
37
+
38
+ For each task, we selected the best fine-tuning hyperparameters from the lists below:
39
+ - epochs: 3, 5, 8
40
+ - batch sizes: 32, 64
41
+ - learning rates: 3e-5, 1e-4, 3e-4
42
 
43
  ## How to use
44
 
45
+ You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium):
46
 
47
  ```python
48
  >>> from transformers import pipeline
49
+ >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512')
50
  >>> unmasker("中国的首都是[MASK]京。")
51
  [
52
+ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]',
53
+ 'score': 0.8701988458633423,
54
  'token': 1266,
55
  'token_str': '北'},
56
  {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]',
57
+ 'score': 0.1194809079170227,
58
+ 'token': 1298,
59
+ 'token_str': '南'},
60
+ {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]',
61
+ 'score': 0.0037803512532263994,
62
  'token': 691,
63
+ 'token_str': '东'},
64
+ {'sequence': '[CLS] 中 国 的 首 都 是 京 。 [SEP]',
65
+ 'score': 0.0017127094324678183,
66
+ 'token': 3249,
67
+ 'token_str': ''},
68
+ {'sequence': '[CLS] 中 国 的 首 都 是 京 。 [SEP]',
69
+ 'score': 0.001687526935711503,
70
+ 'token': 3307,
71
+ 'token_str': ''}
72
  ]
 
73
  ```
74
 
75
  Here is how to use this model to get the features of a given text in PyTorch:
76
 
77
  ```python
78
  from transformers import BertTokenizer, BertModel
79
+ tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
80
+ model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
81
  text = "用你喜欢的任何文本替换我。"
82
  encoded_input = tokenizer(text, return_tensors='pt')
83
  output = model(**encoded_input)
 
87
 
88
  ```python
89
  from transformers import BertTokenizer, TFBertModel
90
+ tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
91
+ model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
92
  text = "用你喜欢的任何文本替换我。"
93
  encoded_input = tokenizer(text, return_tensors='tf')
94
  output = model(encoded_input)
95
  ```
96
 
 
 
97
  ## Training data
98
 
99
+ CLUECorpusSmall is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall.
100
 
101
  ## Training procedure
102
 
103
  Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512.
104
 
105
+ Taking the case of RoBERTa-Medium
106
+
107
+ Stage1:
108
  ```
109
+ python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
110
  --vocab_path models/google_zh_vocab.txt \
111
+ --dataset_path cluecorpussmall_seq128_dataset.pt \
112
  --processes_num 32 --seq_length 128 \
113
  --dynamic_masking --target mlm
114
  ```
115
  ```
116
+ python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \
117
  --vocab_path models/google_zh_vocab.txt \
118
+ --config_path models/bert_medium_config.json \
119
+ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \
120
  --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
121
  --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
122
  --learning_rate 1e-4 --batch_size 64 \
123
+ --tie_weights --embedding word_pos_seg --encoder transformer --mask fully_visible --target mlm
124
  ```
125
+ Stage2:
126
  ```
127
+ python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
128
  --vocab_path models/google_zh_vocab.txt \
129
+ --dataset_path cluecorpussmall_seq512_dataset.pt \
130
  --processes_num 32 --seq_length 512 \
131
  --dynamic_masking --target mlm
132
  ```
133
  ```
134
+ python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \
135
+ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \
136
  --vocab_path models/google_zh_vocab.txt \
137
+ --config_path models/bert_medium_config.json \
138
+ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \
139
  --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
140
  --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
141
  --learning_rate 5e-5 --batch_size 16 \
142
+ --tie_weights --embedding word_pos_seg --encoder transformer --mask fully_visible --target mlm
143
  ```
144
 
145
  ### BibTeX entry and citation info
 
155
  ```
156
 
157
  [2_128]: https://huggingface.co/uer/chinese_roberta_L-2_H-128
158
+ [4_256]: https://huggingface.co/uer/chinese_roberta_L-4_H-256
159
+ [4_512]: https://huggingface.co/uer/chinese_roberta_L-4_H-512
160
+ [8_512]: https://huggingface.co/uer/chinese_roberta_L-8_H-512
161
+ [12_768]: https://huggingface.co/uer/chinese_roberta_L-12_H-768
162
+