uer commited on
Commit
98eb669
1 Parent(s): 492b845

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -13
README.md CHANGED
@@ -4,6 +4,7 @@ datasets: CLUECorpusSmall
4
  widget:
5
  - text: "北京是[MASK]国的首都。"
6
 
 
7
  ---
8
 
9
 
@@ -11,7 +12,7 @@ widget:
11
 
12
  ## Model description
13
 
14
- This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://www.aclweb.org/anthology/D19-3041.pdf).
15
 
16
  [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details.
17
 
@@ -19,12 +20,12 @@ You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Githu
19
 
20
  | | H=128 | H=256 | H=512 | H=768 |
21
  | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: |
22
- | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256] | [2/512] | [2/768] |
23
- | **L=4** | [4/128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768] |
24
- | **L=6** | [6/128] | [6/256] | [6/512] | [6/768] |
25
- | **L=8** | [8/128] | [8/256] | [**8/512 (Medium)**][8_512] | [8/768] |
26
- | **L=10** | [10/128] | [10/256] | [10/512] | [10/768] |
27
- | **L=12** | [12/128] | [12/256] | [12/512] | [**12/768 (Base)**][12_768] |
28
 
29
  Here are scores on the devlopment set of six Chinese tasks:
30
 
@@ -102,7 +103,7 @@ output = model(encoded_input)
102
 
103
  ## Training procedure
104
 
105
- Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512.
106
 
107
  Taking the case of RoBERTa-Medium
108
 
@@ -169,8 +170,27 @@ python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path model
169
  }
170
  ```
171
 
172
- [2_128]: https://huggingface.co/uer/chinese_roberta_L-2_H-128
173
- [4_256]: https://huggingface.co/uer/chinese_roberta_L-4_H-256
174
- [4_512]: https://huggingface.co/uer/chinese_roberta_L-4_H-512
175
- [8_512]: https://huggingface.co/uer/chinese_roberta_L-8_H-512
176
- [12_768]: https://huggingface.co/uer/chinese_roberta_L-12_H-768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  widget:
5
  - text: "北京是[MASK]国的首都。"
6
 
7
+
8
  ---
9
 
10
 
 
12
 
13
  ## Model description
14
 
15
+ This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658).
16
 
17
  [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details.
18
 
 
20
 
21
  | | H=128 | H=256 | H=512 | H=768 |
22
  | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: |
23
+ | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] |
24
+ | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] |
25
+ | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] |
26
+ | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] |
27
+ | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] |
28
+ | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] |
29
 
30
  Here are scores on the devlopment set of six Chinese tasks:
31
 
 
103
 
104
  ## Training procedure
105
 
106
+ Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
107
 
108
  Taking the case of RoBERTa-Medium
109
 
 
170
  }
171
  ```
172
 
173
+ [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128
174
+ [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256
175
+ [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512
176
+ [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768
177
+ [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128
178
+ [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256
179
+ [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512
180
+ [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768
181
+ [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128
182
+ [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256
183
+ [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512
184
+ [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768
185
+ [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128
186
+ [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256
187
+ [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512
188
+ [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768
189
+ [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128
190
+ [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256
191
+ [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512
192
+ [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768
193
+ [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128
194
+ [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256
195
+ [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512
196
+ [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768