Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: Chinese
|
3 |
+
datasets: CLUECorpusSmall
|
4 |
+
widget:
|
5 |
+
- text: "中国的首都是[MASK]京"
|
6 |
+
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
|
11 |
+
# Chinese ALBERT
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
|
15 |
+
This is the set of Chinese ALBERT models pre-trained by UER-py. You can download the model either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below:
|
16 |
+
|
17 |
+
| | Link |
|
18 |
+
| -------- | :-----------------------: |
|
19 |
+
| **ALBERT-Base** | [**L=12/H=768 (Base)**][base] |
|
20 |
+
| **ALBERT-Large** | [**L=24/H=1024 (Large)**][large] |
|
21 |
+
|
22 |
+
## How to use
|
23 |
+
|
24 |
+
You can use the model directly with a pipeline for text generation:
|
25 |
+
|
26 |
+
```python
|
27 |
+
>>> from transformers import BertTokenizer, AlbertForMaskedLM, FillMaskPipeline
|
28 |
+
>>> tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
29 |
+
>>> model = AlbertForMaskedLM.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
30 |
+
>>> unmasker = FillMaskPipeline(model, tokenizer)
|
31 |
+
>>> unmasker("中国的首都是[MASK]京。")
|
32 |
+
[
|
33 |
+
{'sequence': '中 国 的 首 都 是 北 京 。',
|
34 |
+
'score': 0.8528032898902893,
|
35 |
+
'token': 1266,
|
36 |
+
'token_str': '北'},
|
37 |
+
{'sequence': '中 国 的 首 都 是 南 京 。',
|
38 |
+
'score': 0.07667620480060577,
|
39 |
+
'token': 1298,
|
40 |
+
'token_str': '南'},
|
41 |
+
{'sequence': '中 国 的 首 都 是 东 京 。',
|
42 |
+
'score': 0.020440367981791496,
|
43 |
+
'token': 691,
|
44 |
+
'token_str': '东'},
|
45 |
+
{'sequence': '中 国 的 首 都 是 维 京 。',
|
46 |
+
'score': 0.010197942145168781,
|
47 |
+
'token': 5335,
|
48 |
+
'token_str': '维'},
|
49 |
+
{'sequence': '中 国 的 首 都 是 汴 京 。',
|
50 |
+
'score': 0.0075391442514956,
|
51 |
+
'token': 3745,
|
52 |
+
'token_str': '汴'}
|
53 |
+
]
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
58 |
+
|
59 |
+
```python
|
60 |
+
from transformers import BertTokenizer, AlbertModel
|
61 |
+
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
62 |
+
model = AlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
63 |
+
text = "用你喜欢的任何文本替换我。"
|
64 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
65 |
+
output = model(**encoded_input)
|
66 |
+
```
|
67 |
+
|
68 |
+
and in TensorFlow:
|
69 |
+
|
70 |
+
```python
|
71 |
+
from transformers import BertTokenizer, TFAlbertModel
|
72 |
+
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
73 |
+
model = TFAlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
74 |
+
text = "用你喜欢的任何文本替换我。"
|
75 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
76 |
+
output = model(encoded_input)
|
77 |
+
```
|
78 |
+
|
79 |
+
## Training data
|
80 |
+
|
81 |
+
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
|
82 |
+
|
83 |
+
## Training procedure
|
84 |
+
|
85 |
+
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
|
86 |
+
|
87 |
+
Taking the case of ALBERT-Base
|
88 |
+
|
89 |
+
Stage1:
|
90 |
+
|
91 |
+
```
|
92 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
93 |
+
--vocab_path models/google_zh_vocab.txt \
|
94 |
+
--dataset_path cluecorpussmall_albert_seq128_dataset.pt \
|
95 |
+
--seq_length 128 --processes_num 32 --target albert
|
96 |
+
```
|
97 |
+
|
98 |
+
```
|
99 |
+
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq128_dataset.pt \
|
100 |
+
--vocab_path models/google_zh_vocab.txt \
|
101 |
+
--config_path models/albert/base_config.json \
|
102 |
+
--output_model_path models/cluecorpussmall_albert_base_seq128_model.bin \
|
103 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
104 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
105 |
+
--learning_rate 1e-4 --batch_size 64 \
|
106 |
+
--factorized_embedding_parameterization --parameter_sharing \
|
107 |
+
--embedding word_pos_seg --encoder transformer --mask fully_visible --target albert
|
108 |
+
```
|
109 |
+
|
110 |
+
Stage2:
|
111 |
+
|
112 |
+
```
|
113 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
114 |
+
--vocab_path models/google_zh_vocab.txt \
|
115 |
+
--dataset_path cluecorpussmall_albert_seq512_dataset.pt \
|
116 |
+
--seq_length 512 --processes_num 32 --target albert
|
117 |
+
```
|
118 |
+
|
119 |
+
```
|
120 |
+
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq512_dataset.pt \
|
121 |
+
--pretrained_model_path models/cluecorpussmall_albert_base_seq128_model.bin-1000000 \
|
122 |
+
--vocab_path models/google_zh_vocab.txt \
|
123 |
+
--config_path models/albert/base_config.json \
|
124 |
+
--output_model_path models/cluecorpussmall_albert_base_seq512_model.bin \
|
125 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
126 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
127 |
+
--learning_rate 1e-4 --batch_size 64 \
|
128 |
+
--factorized_embedding_parameterization --parameter_sharing \
|
129 |
+
--embedding word_pos_seg --encoder transformer --mask fully_visible --target albert
|
130 |
+
```
|
131 |
+
|
132 |
+
Finally, we convert the pre-trained model into Huggingface's format:
|
133 |
+
|
134 |
+
```
|
135 |
+
python3 scripts/convert_albert_from_uer_to_huggingface.py --input_model_path cluecorpussmall_albert_base_seq512_model.bin-250000 \
|
136 |
+
--output_model_path pytorch_model.bin
|
137 |
+
```
|
138 |
+
|
139 |
+
### BibTeX entry and citation info
|
140 |
+
|
141 |
+
```
|
142 |
+
@article{lan2019albert,
|
143 |
+
title={Albert: A lite bert for self-supervised learning of language representations},
|
144 |
+
author={Lan, Zhenzhong and Chen, Mingda and Goodman, Sebastian and Gimpel, Kevin and Sharma, Piyush and Soricut, Radu},
|
145 |
+
journal={arXiv preprint arXiv:1909.11942},
|
146 |
+
year={2019}
|
147 |
+
}
|
148 |
+
|
149 |
+
@article{zhao2019uer,
|
150 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
151 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
152 |
+
journal={EMNLP-IJCNLP 2019},
|
153 |
+
pages={241},
|
154 |
+
year={2019}
|
155 |
+
}
|
156 |
+
```
|
157 |
+
[base]:https://huggingface.co/uer/albert-base-chinese-cluecorpussmall
|
158 |
+
[large]:https://huggingface.co/uer/albert-large-chinese-cluecorpussmall
|