|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
|
|
--- |
|
|
|
# keyphrase-mpnet-v1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model specialized for phrases: It maps phrases to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. In the original paper, this model is used for calculating semantic-based evaluation metrics of keyphrase models. |
|
|
|
This model is based on [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) and further fine-tuned on 1 million keyphrase data with SimCSE. |
|
|
|
## Citing & Authors |
|
Paper: [KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems](https://arxiv.org/abs/2303.15422) |
|
``` |
|
@article{wu2023kpeval, |
|
title={KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems}, |
|
author={Di Wu and Da Yin and Kai-Wei Chang}, |
|
year={2023}, |
|
eprint={2303.15422}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
phrases = ["information retrieval", "text mining", "natural language processing"] |
|
|
|
model = SentenceTransformer('uclanlp/keyphrase-mpnet-v1') |
|
embeddings = model.encode(phrases) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
phrases = ["information retrieval", "text mining", "natural language processing"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('uclanlp/keyphrase-mpnet-v1') |
|
model = AutoModel.from_pretrained('uclanlp/keyphrase-mpnet-v1') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(phrases, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Phrase embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Training |
|
The model is trained on phrases from four keyphrase datasets covering a wide range of domains. |
|
|
|
| Dataset Name | Domain | Number of Phrases | |
|
|-------------------------------------------------------------|---------------|-------------------| |
|
| [KP20k](https://www.aclweb.org/anthology/P17-1054/) | Science | 715369 | |
|
| [KPTimes](https://www.aclweb.org/anthology/W19-8617/) | News | 113456 | |
|
| [StackEx](https://www.aclweb.org/anthology/2020.acl-main.710/) | Online Forum | 8149 | |
|
| [OpenKP](https://www.aclweb.org/anthology/D19-1521/) | Web | 200335 | |
|
| **Total** | | **1030309** | |
|
|
|
|
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 2025 with parameters: |
|
``` |
|
{'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 1, |
|
"evaluation_steps": 0, |
|
"evaluator": "NoneType", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 1e-06 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 203, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 12, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|