metadata
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: t5-small-finetuned-cnn
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 33.2082
t5-small-finetuned-cnn
This model is a fine-tuned version of t5-small on the cnn_dailymail dataset. It achieves the following results on the evaluation set:
- Loss: 1.8436
- Rouge1: 33.2082
- Rouge2: 16.798
- Rougel: 28.9573
- Rougelsum: 31.1044
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
2.3793 | 1.0 | 359 | 1.8885 | 33.0321 | 16.7798 | 28.9367 | 30.9509 |
2.1432 | 2.0 | 718 | 1.8481 | 33.1559 | 16.8557 | 29.015 | 31.1122 |
2.0571 | 3.0 | 1077 | 1.8391 | 32.99 | 16.716 | 28.8118 | 30.9178 |
2.0001 | 4.0 | 1436 | 1.8357 | 33.0543 | 16.6731 | 28.8375 | 30.9604 |
1.9609 | 5.0 | 1795 | 1.8437 | 33.1019 | 16.7576 | 28.8669 | 31.001 |
1.925 | 6.0 | 2154 | 1.8402 | 33.1388 | 16.7539 | 28.8887 | 31.0262 |
1.9036 | 7.0 | 2513 | 1.8423 | 33.1825 | 16.759 | 28.9154 | 31.0656 |
1.8821 | 8.0 | 2872 | 1.8436 | 33.2082 | 16.798 | 28.9573 | 31.1044 |
Framework versions
- Transformers 4.14.0
- Pytorch 1.5.0
- Datasets 2.3.2
- Tokenizers 0.10.3