uaritm commited on
Commit
1e7137a
1 Parent(s): deaa79d

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -28,3 +28,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
30
  model_head.pkl filter=lfs diff=lfs merge=lfs -text
 
 
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
30
  model_head.pkl filter=lfs diff=lfs merge=lfs -text
31
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 384,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
README.md CHANGED
@@ -1,134 +1,49 @@
1
  ---
2
- pipeline_tag: sentence-similarity
3
  tags:
 
4
  - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
- license: creativeml-openrail-m
9
- language:
10
- - multilingual
11
-
12
  ---
13
 
14
- # {MODEL_NAME}
15
-
16
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
17
-
18
- <!--- Describe your model here -->
19
 
20
- Multilingual version of the model: [uaritm/psychology_test]("uaritm/psychology_test")
21
- ```
22
 
23
- Warning: This model cannot be used for medical diagnosis and is not a substitute for a physician!
 
24
 
25
- ## Usage (Sentence-Transformers)
26
 
27
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
28
 
 
 
29
  ```
30
- pip install -U sentence-transformers
31
- ```
32
-
33
- Then you can use the model like this:
34
-
35
- ```python
36
- from sentence_transformers import SentenceTransformer
37
- sentences = ["This is an example sentence", "Each sentence is converted"]
38
-
39
- model = SentenceTransformer('{MODEL_NAME}')
40
- embeddings = model.encode(sentences)
41
- print(embeddings)
42
- ```
43
-
44
 
45
-
46
- ## Usage (HuggingFace Transformers)
47
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
48
 
49
  ```python
50
- from transformers import AutoTokenizer, AutoModel
51
- import torch
52
-
53
-
54
- #Mean Pooling - Take attention mask into account for correct averaging
55
- def mean_pooling(model_output, attention_mask):
56
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
57
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
58
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
59
-
60
-
61
- # Sentences we want sentence embeddings for
62
- sentences = ['This is an example sentence', 'Each sentence is converted']
63
-
64
- # Load model from HuggingFace Hub
65
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
66
- model = AutoModel.from_pretrained('{MODEL_NAME}')
67
-
68
- # Tokenize sentences
69
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
70
-
71
- # Compute token embeddings
72
- with torch.no_grad():
73
- model_output = model(**encoded_input)
74
-
75
- # Perform pooling. In this case, mean pooling.
76
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
77
-
78
- print("Sentence embeddings:")
79
- print(sentence_embeddings)
80
- ```
81
-
82
-
83
-
84
- ## Evaluation Results
85
-
86
- <!--- Describe how your model was evaluated -->
87
-
88
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
89
-
90
-
91
- ## Training
92
- The model was trained with the parameters:
93
-
94
- **DataLoader**:
95
-
96
- `torch.utils.data.dataloader.DataLoader` of length 120 with parameters:
97
- ```
98
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
99
- ```
100
-
101
- **Loss**:
102
-
103
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
104
-
105
- Parameters of the fit()-Method:
106
- ```
107
- {
108
- "epochs": 1,
109
- "evaluation_steps": 0,
110
- "evaluator": "NoneType",
111
- "max_grad_norm": 1,
112
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
113
- "optimizer_params": {
114
- "lr": 2e-05
115
- },
116
- "scheduler": "WarmupLinear",
117
- "steps_per_epoch": 120,
118
- "warmup_steps": 12,
119
- "weight_decay": 0.01
120
  }
121
  ```
122
-
123
-
124
- ## Full Model Architecture
125
- ```
126
- SentenceTransformer(
127
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
128
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
129
- )
130
- ```
131
-
132
- ## Citing & Authors
133
-
134
- <!--- Describe where people can find more information -->
 
1
  ---
2
+ license: apache-2.0
3
  tags:
4
+ - setfit
5
  - sentence-transformers
6
+ - text-classification
7
+ pipeline_tag: text-classification
 
 
 
 
 
8
  ---
9
 
10
+ # uaritm/lik_neuro_202
 
 
 
 
11
 
12
+ This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
 
13
 
14
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
15
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
16
 
17
+ ## Usage
18
 
19
+ To use this model for inference, first install the SetFit library:
20
 
21
+ ```bash
22
+ python -m pip install setfit
23
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ You can then run inference as follows:
 
 
26
 
27
  ```python
28
+ from setfit import SetFitModel
29
+
30
+ # Download from Hub and run inference
31
+ model = SetFitModel.from_pretrained("uaritm/lik_neuro_202")
32
+ # Run inference
33
+ preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
34
+ ```
35
+
36
+ ## BibTeX entry and citation info
37
+
38
+ ```bibtex
39
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
40
+ doi = {10.48550/ARXIV.2209.11055},
41
+ url = {https://arxiv.org/abs/2209.11055},
42
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
43
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
44
+ title = {Efficient Few-Shot Learning Without Prompts},
45
+ publisher = {arXiv},
46
+ year = {2022},
47
+ copyright = {Creative Commons Attribution 4.0 International}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  }
49
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,29 +1,26 @@
1
  {
2
- "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
3
  "architectures": [
4
- "XLMRobertaModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
  "classifier_dropout": null,
9
- "eos_token_id": 2,
10
  "gradient_checkpointing": false,
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
13
- "hidden_size": 768,
14
  "initializer_range": 0.02,
15
- "intermediate_size": 3072,
16
- "layer_norm_eps": 1e-05,
17
- "max_position_embeddings": 514,
18
- "model_type": "xlm-roberta",
19
  "num_attention_heads": 12,
20
  "num_hidden_layers": 12,
21
- "output_past": true,
22
- "pad_token_id": 1,
23
  "position_embedding_type": "absolute",
24
  "torch_dtype": "float32",
25
- "transformers_version": "4.26.0",
26
- "type_vocab_size": 1,
27
  "use_cache": true,
28
- "vocab_size": 250002
29
  }
 
1
  {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2/",
3
  "architectures": [
4
+ "BertModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
 
7
  "classifier_dropout": null,
 
8
  "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
  "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
  "num_attention_heads": 12,
18
  "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
 
20
  "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
22
+ "transformers_version": "4.28.1",
23
+ "type_vocab_size": 2,
24
  "use_cache": true,
25
+ "vocab_size": 250037
26
  }
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab9d9ad8ade2dec1fbe3a4cc4819101cb83302aa1885b28559c3b8d74ca27c04
3
- size 10500
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2421d6f1b30c4b99b640d2fe0f976e6b5059035cdc2b8418f0f1cb5023624db6
3
+ size 6111
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b55830ac41241258bf61a84e5649985addafbe9f1180ff3c18ed87c5718a2ace
3
- size 1112242989
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecc8dd7cb33f8042fa9dcf85a440777281970ba51d6e054a1d144700352cf866
3
+ size 470686253
tokenizer_config.json CHANGED
@@ -1,6 +1,8 @@
1
  {
2
  "bos_token": "<s>",
 
3
  "cls_token": "<s>",
 
4
  "eos_token": "</s>",
5
  "mask_token": {
6
  "__type": "AddedToken",
@@ -11,10 +13,10 @@
11
  "single_word": false
12
  },
13
  "model_max_length": 512,
14
- "name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
15
  "pad_token": "<pad>",
16
  "sep_token": "</s>",
17
- "special_tokens_map_file": null,
18
- "tokenizer_class": "XLMRobertaTokenizer",
 
19
  "unk_token": "<unk>"
20
  }
 
1
  {
2
  "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
  "cls_token": "<s>",
5
+ "do_lower_case": true,
6
  "eos_token": "</s>",
7
  "mask_token": {
8
  "__type": "AddedToken",
 
13
  "single_word": false
14
  },
15
  "model_max_length": 512,
 
16
  "pad_token": "<pad>",
17
  "sep_token": "</s>",
18
+ "strip_accents": null,
19
+ "tokenize_chinese_chars": true,
20
+ "tokenizer_class": "BertTokenizer",
21
  "unk_token": "<unk>"
22
  }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71b44701d7efd054205115acfa6ef126c5d2f84bd3affe0c59e48163674d19a6
3
+ size 14763234