metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- automatic-speech-recognition
- timit_asr
- generated_from_trainer
datasets:
- timit_asr
metrics:
- wer
model-index:
- name: wav2vec2-base-timit-fine-tuned
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: TIMIT_ASR - NA
type: timit_asr
config: clean
split: test
args: 'Config: na, Training split: train, Eval split: test'
metrics:
- name: Wer
type: wer
value: 0.4090867704634435
wav2vec2-base-timit-fine-tuned
This model is a fine-tuned version of facebook/wav2vec2-base on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.4218
- Wer: 0.4091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.1612 | 0.8621 | 100 | 3.1181 | 1.0 |
2.978 | 1.7241 | 200 | 2.9722 | 1.0 |
2.9185 | 2.5862 | 300 | 2.9098 | 1.0 |
2.1282 | 3.4483 | 400 | 2.0066 | 1.0247 |
1.1234 | 4.3103 | 500 | 1.0197 | 0.8393 |
0.602 | 5.1724 | 600 | 0.6714 | 0.6600 |
0.5032 | 6.0345 | 700 | 0.5285 | 0.5659 |
0.3101 | 6.8966 | 800 | 0.4819 | 0.5282 |
0.3432 | 7.7586 | 900 | 0.4653 | 0.5272 |
0.1922 | 8.6207 | 1000 | 0.4672 | 0.4918 |
0.2284 | 9.4828 | 1100 | 0.4834 | 0.4870 |
0.1372 | 10.3448 | 1200 | 0.4380 | 0.4727 |
0.1105 | 11.2069 | 1300 | 0.4509 | 0.4594 |
0.0992 | 12.0690 | 1400 | 0.4196 | 0.4544 |
0.1226 | 12.9310 | 1500 | 0.4237 | 0.4321 |
0.1013 | 13.7931 | 1600 | 0.4113 | 0.4298 |
0.0661 | 14.6552 | 1700 | 0.4038 | 0.4276 |
0.0901 | 15.5172 | 1800 | 0.4321 | 0.4225 |
0.053 | 16.3793 | 1900 | 0.4076 | 0.4236 |
0.0805 | 17.2414 | 2000 | 0.4336 | 0.4156 |
0.049 | 18.1034 | 2100 | 0.4193 | 0.4114 |
0.0717 | 18.9655 | 2200 | 0.4139 | 0.4091 |
0.0389 | 19.8276 | 2300 | 0.4216 | 0.4087 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0a0+git71dd2de
- Datasets 2.19.1
- Tokenizers 0.19.1