tyzhu's picture
End of training
7a30c2a verified
|
raw
history blame
3.17 kB
metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_qa_3e-4_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5883291139240506

lmind_hotpot_train8000_eval7405_v1_qa_3e-4_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9650
  • Accuracy: 0.5883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7554 1.0 250 1.7940 0.6093
1.5248 2.0 500 1.8274 0.6085
1.2054 3.0 750 1.9718 0.6027
0.8989 4.0 1000 2.1519 0.5987
0.6306 5.0 1250 2.3293 0.5961
0.4712 6.0 1500 2.5599 0.5936
0.3797 7.0 1750 2.7329 0.5936
0.3527 8.0 2000 2.8185 0.5913
0.3314 9.0 2250 2.8250 0.592
0.3265 10.0 2500 2.9242 0.5911
0.3148 11.0 2750 3.0013 0.5912
0.3184 12.0 3000 2.9315 0.5906
0.3101 13.0 3250 2.9116 0.5897
0.3164 14.0 3500 2.9208 0.5902
0.3074 15.0 3750 2.9385 0.5909
0.3107 16.0 4000 2.9519 0.5892
0.3054 17.0 4250 3.0108 0.5898
0.309 18.0 4500 3.0037 0.5904
0.3005 19.0 4750 3.0279 0.5898
0.3127 20.0 5000 2.9650 0.5883

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1