tyrealqian's picture
Add BERTopic model
f8624a3 verified
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

bertopic_WGnews_Oct31

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("tyrealqian/bertopic_WGnews_Oct31")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 28
  • Number of training documents: 6196
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 beijing - winter - olympics - winter olympics - olympic 18 -1_beijing_winter_olympics_winter olympics
0 gold - medal - olympics - beijing - womens 2054 0_gold_medal_olympics_beijing
1 covid - olympics - beijing - cases - winter 633 1_covid_olympics_beijing_cases
2 gold - gu - womens - chinas - mens 524 2_gold_gu_womens_chinas
3 president - xi - xi jinping - jinping - president xi 388 3_president_xi_xi jinping_jinping
4 boycott - diplomatic - diplomatic boycott - boycott beijing - rights 372 4_boycott_diplomatic_diplomatic boycott_boycott beijing
5 dwen - mascot - bing - bing dwen - dwen dwen 328 5_dwen_mascot_bing_bing dwen
6 ceremony - opening - opening ceremony - beijing - ceremony beijing 305 6_ceremony_opening_opening ceremony_beijing
7 kamila - valieva - kamila valieva - russian - figure 249 7_kamila_valieva_kamila valieva_russian
8 torch - flame - relay - torch relay - olympic 208 8_torch_flame_relay_torch relay
9 venue - ice - venues - zhangjiakou - beijing 194 9_venue_ice_venues_zhangjiakou
10 sports - winter sports - winter - globalink - snow 159 10_sports_winter sports_winter_globalink
11 food - robot - robots - served - serving 122 11_food_robot_robots_served
12 green - carbon - games - beijing - winter 120 12_green_carbon_games_beijing
13 coverage - heres - day - olympics - gold 90 13_coverage_heres_day_olympics
14 bach - thomas bach - thomas - president thomas - ioc 59 14_bach_thomas bach_thomas_president thomas
15 snow - snowfall - heavy - weather - heavy snowfall 48 15_snow_snowfall_heavy_weather
16 bank - commemorative - digital - yuan - set 43 16_bank_commemorative_digital_yuan
17 paralympic - paralympic games - games - paralympic winter - winter paralympic 37 17_paralympic_paralympic games_games_paralympic winter
18 phones - personal - burner - app - smartphonelike 34 18_phones_personal_burner_app
19 nbc - nbcuniversal - ads - ratings - nbcs 31 19_nbc_nbcuniversal_ads_ratings
20 watch beijing - watch - athletes watch - know - names 27 20_watch beijing_watch_athletes watch_know
21 ukraine - invasion - russian - invasion ukraine - ukraine beijing 27 21_ukraine_invasion_russian_invasion ukraine
22 city - summer winter - summer - host summer - city host 27 22_city_summer winter_summer_host summer
23 leduc - nonbinary - timothy leduc - timothy - openly 26 23_leduc_nonbinary_timothy leduc_timothy
24 ralph lauren - lauren - ralph - uniforms - team 26 24_ralph lauren_lauren_ralph_uniforms
25 peng - shuai - peng shuai - tennis - chinese tennis 25 25_peng_shuai_peng shuai_tennis
26 women - female athletes - record - athletes - female 22 26_women_female athletes_record_athletes

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.39
  • UMAP: 0.5.7
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.2.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12