tyang816 commited on
Commit
37af75f
·
verified ·
1 Parent(s): 3f4a71a

Upload 4 files

Browse files
configuration_baichuan.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class BaiChuanConfig(PretrainedConfig):
29
+ model_type = "baichuan"
30
+ keys_to_ignore_at_inference = ["past_key_values"]
31
+
32
+ def __init__(
33
+ self,
34
+ vocab_size=64000,
35
+ hidden_size=4096,
36
+ intermediate_size=11008,
37
+ num_hidden_layers=32,
38
+ num_attention_heads=32,
39
+ hidden_act="silu",
40
+ max_position_embeddings=4096,
41
+ initializer_range=0.02,
42
+ rms_norm_eps=1e-6,
43
+ use_cache=True,
44
+ pad_token_id=0,
45
+ bos_token_id=1,
46
+ eos_token_id=2,
47
+ tie_word_embeddings=False,
48
+ **kwargs,
49
+ ):
50
+ self.vocab_size = vocab_size
51
+ self.max_position_embeddings = max_position_embeddings
52
+ self.hidden_size = hidden_size
53
+ self.intermediate_size = intermediate_size
54
+ self.num_hidden_layers = num_hidden_layers
55
+ self.num_attention_heads = num_attention_heads
56
+ self.hidden_act = hidden_act
57
+ self.initializer_range = initializer_range
58
+ self.rms_norm_eps = rms_norm_eps
59
+ self.use_cache = use_cache
60
+ super().__init__(
61
+ pad_token_id=pad_token_id,
62
+ bos_token_id=bos_token_id,
63
+ eos_token_id=eos_token_id,
64
+ tie_word_embeddings=tie_word_embeddings,
65
+ **kwargs,
66
+ )
handler.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Dict, List, Any
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
4
+
5
+ # get dtype
6
+ dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
7
+
8
+
9
+ class EndpointHandler:
10
+ def __init__(self, path=""):
11
+ # load the model
12
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
13
+ model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
14
+ # create inference pipeline
15
+ self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
16
+
17
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
18
+ inputs = data.pop("inputs", data)
19
+ parameters = data.pop("parameters", None)
20
+
21
+ # pass inputs with all kwargs in data
22
+ if parameters is not None:
23
+ prediction = self.pipeline(inputs, **parameters)
24
+ else:
25
+ prediction = self.pipeline(inputs)
26
+ # postprocess the prediction
27
+ return prediction
modeling_baichuan.py ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ from .configuration_baichuan import BaiChuanConfig
21
+
22
+ import copy
23
+ import warnings
24
+ import math
25
+ from typing import *
26
+ import re
27
+ import torch
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+ from transformers import PreTrainedModel, add_start_docstrings
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
34
+ SequenceClassifierOutputWithPast
35
+ from transformers.utils import logging, add_start_docstrings_to_model_forward, replace_return_docstrings
36
+ from transformers.generation.logits_process import LogitsProcessor
37
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ # copied from https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/modeling_chatglm.py
42
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
43
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
44
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
45
+ scores.zero_()
46
+ scores[..., 5] = 5e4
47
+ return scores
48
+
49
+ def generate_prompt(input_text):
50
+ return "Human: \n" + input_text + "\n\nAssistant:\n"
51
+
52
+
53
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
54
+ def _make_causal_mask(
55
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
56
+ ):
57
+ """
58
+ Make causal mask used for bi-directional self-attention.
59
+ """
60
+ bsz, tgt_len = input_ids_shape
61
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
62
+ mask_cond = torch.arange(mask.size(-1), device=device)
63
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
64
+ mask = mask.to(dtype)
65
+
66
+ if past_key_values_length > 0:
67
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
68
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
69
+
70
+
71
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
72
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
73
+ """
74
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
75
+ """
76
+ bsz, src_len = mask.size()
77
+ tgt_len = tgt_len if tgt_len is not None else src_len
78
+
79
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
80
+
81
+ inverted_mask = 1.0 - expanded_mask
82
+
83
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
84
+
85
+
86
+ class RMSNorm(nn.Module):
87
+ def __init__(self, hidden_size, eps=1e-6):
88
+ """
89
+ RMSNorm is equivalent to T5LayerNorm
90
+ """
91
+ super().__init__()
92
+ self.weight = nn.Parameter(torch.ones(hidden_size))
93
+ self.variance_epsilon = eps
94
+
95
+ def forward(self, hidden_states):
96
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
97
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
98
+
99
+ # convert into half-precision if necessary
100
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
101
+ hidden_states = hidden_states.to(self.weight.dtype)
102
+
103
+ return self.weight * hidden_states
104
+
105
+
106
+ class RotaryEmbedding(torch.nn.Module):
107
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
108
+ super().__init__()
109
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
110
+ self.register_buffer("inv_freq", inv_freq)
111
+
112
+ # Build here to make `torch.jit.trace` work.
113
+ self.max_seq_len_cached = max_position_embeddings
114
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
115
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
116
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
117
+ emb = torch.cat((freqs, freqs), dim=-1)
118
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
119
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
120
+
121
+ def forward(self, x, seq_len=None):
122
+ # x: [bs, num_attention_heads, seq_len, head_size]
123
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
124
+ if seq_len > self.max_seq_len_cached:
125
+ self.max_seq_len_cached = seq_len
126
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
127
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
128
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
129
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
130
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
131
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
132
+ return (
133
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
134
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
135
+ )
136
+
137
+
138
+ def rotate_half(x):
139
+ """Rotates half the hidden dims of the input."""
140
+ x1 = x[..., : x.shape[-1] // 2]
141
+ x2 = x[..., x.shape[-1] // 2:]
142
+ return torch.cat((-x2, x1), dim=-1)
143
+
144
+
145
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
146
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
147
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
148
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
149
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
150
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
151
+ q_embed = (q * cos) + (rotate_half(q) * sin)
152
+ k_embed = (k * cos) + (rotate_half(k) * sin)
153
+ return q_embed, k_embed
154
+
155
+
156
+ class MLP(nn.Module):
157
+ def __init__(
158
+ self,
159
+ hidden_size: int,
160
+ intermediate_size: int,
161
+ hidden_act: str,
162
+ ):
163
+ super().__init__()
164
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
165
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
166
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
167
+ self.act_fn = ACT2FN[hidden_act]
168
+
169
+ def forward(self, x):
170
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
171
+
172
+
173
+ class Attention(nn.Module):
174
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
175
+
176
+ def __init__(self, config: BaiChuanConfig):
177
+ super().__init__()
178
+ self.config = config
179
+ self.hidden_size = config.hidden_size
180
+ self.num_heads = config.num_attention_heads
181
+ self.head_dim = self.hidden_size // self.num_heads
182
+ self.max_position_embeddings = config.max_position_embeddings
183
+
184
+ if (self.head_dim * self.num_heads) != self.hidden_size:
185
+ raise ValueError(
186
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
187
+ f" and `num_heads`: {self.num_heads})."
188
+ )
189
+ # self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
190
+ # self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
191
+ # self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
192
+ self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
193
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
194
+ self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
195
+
196
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
197
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
198
+
199
+ def forward(
200
+ self,
201
+ hidden_states: torch.Tensor,
202
+ attention_mask: Optional[torch.Tensor] = None,
203
+ position_ids: Optional[torch.LongTensor] = None,
204
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
205
+ output_attentions: bool = False,
206
+ use_cache: bool = False,
207
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
208
+ bsz, q_len, _ = hidden_states.size()
209
+
210
+ proj = self.W_pack(hidden_states)
211
+ proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
212
+ query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1,
213
+ 2) # batch_size x source_len x hidden_size
214
+ key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1,
215
+ 2) # batch_size x target_len x head_size
216
+ value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1,
217
+ 2) # batch_size x source_len x hidden_size
218
+
219
+ # query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
220
+ # key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
221
+ # value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
222
+
223
+ kv_seq_len = key_states.shape[-2]
224
+ if past_key_value is not None:
225
+ kv_seq_len += past_key_value[0].shape[-2]
226
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
227
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
228
+ # [bsz, nh, t, hd]
229
+
230
+ if past_key_value is not None:
231
+ # reuse k, v, self_attention
232
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
233
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
234
+
235
+ past_key_value = (key_states, value_states) if use_cache else None
236
+
237
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
238
+
239
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
240
+ raise ValueError(
241
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
242
+ f" {attn_weights.size()}"
243
+ )
244
+
245
+ if attention_mask is not None:
246
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
247
+ raise ValueError(
248
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
249
+ )
250
+ attn_weights = attn_weights + attention_mask
251
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
252
+
253
+ # upcast attention to fp32
254
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
255
+ attn_output = torch.matmul(attn_weights, value_states)
256
+
257
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
258
+ raise ValueError(
259
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
260
+ f" {attn_output.size()}"
261
+ )
262
+
263
+ attn_output = attn_output.transpose(1, 2)
264
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
265
+
266
+ attn_output = self.o_proj(attn_output)
267
+
268
+ if not output_attentions:
269
+ attn_weights = None
270
+
271
+ return attn_output, attn_weights, past_key_value
272
+
273
+
274
+ class DecoderLayer(nn.Module):
275
+ def __init__(self, config: BaiChuanConfig):
276
+ super().__init__()
277
+ self.hidden_size = config.hidden_size
278
+ self.self_attn = Attention(config=config)
279
+ self.mlp = MLP(
280
+ hidden_size=self.hidden_size,
281
+ intermediate_size=config.intermediate_size,
282
+ hidden_act=config.hidden_act,
283
+ )
284
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
285
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
286
+
287
+ def forward(
288
+ self,
289
+ hidden_states: torch.Tensor,
290
+ attention_mask: Optional[torch.Tensor] = None,
291
+ position_ids: Optional[torch.LongTensor] = None,
292
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
293
+ output_attentions: Optional[bool] = False,
294
+ use_cache: Optional[bool] = False,
295
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
296
+ """
297
+ Args:
298
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
299
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
300
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
301
+ output_attentions (`bool`, *optional*):
302
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
303
+ returned tensors for more detail.
304
+ use_cache (`bool`, *optional*):
305
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
306
+ (see `past_key_values`).
307
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
308
+ """
309
+
310
+ residual = hidden_states
311
+
312
+ hidden_states = self.input_layernorm(hidden_states)
313
+
314
+ # Self Attention
315
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
316
+ hidden_states=hidden_states,
317
+ attention_mask=attention_mask,
318
+ position_ids=position_ids,
319
+ past_key_value=past_key_value,
320
+ output_attentions=output_attentions,
321
+ use_cache=use_cache,
322
+ )
323
+ hidden_states = residual + hidden_states
324
+
325
+ # Fully Connected
326
+ residual = hidden_states
327
+ hidden_states = self.post_attention_layernorm(hidden_states)
328
+ hidden_states = self.mlp(hidden_states)
329
+ hidden_states = residual + hidden_states
330
+
331
+ outputs = (hidden_states,)
332
+
333
+ if output_attentions:
334
+ outputs += (self_attn_weights,)
335
+
336
+ if use_cache:
337
+ outputs += (present_key_value,)
338
+
339
+ return outputs
340
+
341
+
342
+ class PreTrainedModel(PreTrainedModel):
343
+ config_class = BaiChuanConfig
344
+ base_model_prefix = "model"
345
+ supports_gradient_checkpointing = True
346
+ _no_split_modules = ["DecoderLayer"]
347
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
348
+
349
+ def _init_weights(self, module):
350
+ std = self.config.initializer_range
351
+ if isinstance(module, nn.Linear):
352
+ module.weight.data.normal_(mean=0.0, std=std)
353
+ if module.bias is not None:
354
+ module.bias.data.zero_()
355
+ elif isinstance(module, nn.Embedding):
356
+ module.weight.data.normal_(mean=0.0, std=std)
357
+ if module.padding_idx is not None:
358
+ module.weight.data[module.padding_idx].zero_()
359
+
360
+ def _set_gradient_checkpointing(self, module, value=False):
361
+ if isinstance(module, Model):
362
+ module.gradient_checkpointing = value
363
+
364
+
365
+ class Model(PreTrainedModel):
366
+ """
367
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`]
368
+
369
+ Args:
370
+ config: BaiChuanConfig
371
+ """
372
+
373
+ def __init__(self, config: BaiChuanConfig):
374
+ super().__init__(config)
375
+ self.padding_idx = config.pad_token_id
376
+ self.vocab_size = config.vocab_size
377
+
378
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
379
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
380
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
381
+
382
+ self.gradient_checkpointing = False
383
+ # Initialize weights and apply final processing
384
+ self.post_init()
385
+
386
+ def get_input_embeddings(self):
387
+ return self.embed_tokens
388
+
389
+ def set_input_embeddings(self, value):
390
+ self.embed_tokens = value
391
+
392
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
393
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
394
+ # create causal mask
395
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
396
+ combined_attention_mask = None
397
+ if input_shape[-1] > 1:
398
+ combined_attention_mask = _make_causal_mask(
399
+ input_shape,
400
+ inputs_embeds.dtype,
401
+ device=inputs_embeds.device,
402
+ past_key_values_length=past_key_values_length,
403
+ )
404
+
405
+ if attention_mask is not None:
406
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
407
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
408
+ inputs_embeds.device
409
+ )
410
+ combined_attention_mask = (
411
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
412
+ )
413
+
414
+ return combined_attention_mask
415
+
416
+ def forward(
417
+ self,
418
+ input_ids: torch.LongTensor = None,
419
+ attention_mask: Optional[torch.Tensor] = None,
420
+ position_ids: Optional[torch.LongTensor] = None,
421
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
422
+ inputs_embeds: Optional[torch.FloatTensor] = None,
423
+ use_cache: Optional[bool] = None,
424
+ output_attentions: Optional[bool] = None,
425
+ output_hidden_states: Optional[bool] = None,
426
+ return_dict: Optional[bool] = None,
427
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
428
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
429
+ output_hidden_states = (
430
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
431
+ )
432
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
433
+
434
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
435
+
436
+ # retrieve input_ids and inputs_embeds
437
+ if input_ids is not None and inputs_embeds is not None:
438
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
439
+ elif input_ids is not None:
440
+ batch_size, seq_length = input_ids.shape
441
+ elif inputs_embeds is not None:
442
+ batch_size, seq_length, _ = inputs_embeds.shape
443
+ else:
444
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
445
+
446
+ seq_length_with_past = seq_length
447
+ past_key_values_length = 0
448
+
449
+ if past_key_values is not None:
450
+ past_key_values_length = past_key_values[0][0].shape[2]
451
+ seq_length_with_past = seq_length_with_past + past_key_values_length
452
+
453
+ if position_ids is None:
454
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
455
+ position_ids = torch.arange(
456
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
457
+ )
458
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
459
+ else:
460
+ position_ids = position_ids.view(-1, seq_length).long()
461
+
462
+ if inputs_embeds is None:
463
+ inputs_embeds = self.embed_tokens(input_ids)
464
+ # embed positions
465
+ if attention_mask is None:
466
+ attention_mask = torch.ones(
467
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
468
+ )
469
+ attention_mask = self._prepare_decoder_attention_mask(
470
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
471
+ )
472
+
473
+ hidden_states = inputs_embeds
474
+
475
+ if self.gradient_checkpointing and self.training:
476
+ if use_cache:
477
+ logger.warning_once(
478
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
479
+ )
480
+ use_cache = False
481
+
482
+ # decoder layers
483
+ all_hidden_states = () if output_hidden_states else None
484
+ all_self_attns = () if output_attentions else None
485
+ next_decoder_cache = () if use_cache else None
486
+
487
+ for idx, decoder_layer in enumerate(self.layers):
488
+ if output_hidden_states:
489
+ all_hidden_states += (hidden_states,)
490
+
491
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
492
+
493
+ if self.gradient_checkpointing and self.training:
494
+
495
+ def create_custom_forward(module):
496
+ def custom_forward(*inputs):
497
+ # None for past_key_value
498
+ return module(*inputs, output_attentions, None)
499
+
500
+ return custom_forward
501
+
502
+ layer_outputs = torch.utils.checkpoint.checkpoint(
503
+ create_custom_forward(decoder_layer),
504
+ hidden_states,
505
+ attention_mask,
506
+ position_ids,
507
+ None,
508
+ )
509
+ else:
510
+ layer_outputs = decoder_layer(
511
+ hidden_states,
512
+ attention_mask=attention_mask,
513
+ position_ids=position_ids,
514
+ past_key_value=past_key_value,
515
+ output_attentions=output_attentions,
516
+ use_cache=use_cache,
517
+ )
518
+
519
+ hidden_states = layer_outputs[0]
520
+
521
+ if use_cache:
522
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
523
+
524
+ if output_attentions:
525
+ all_self_attns += (layer_outputs[1],)
526
+
527
+ hidden_states = self.norm(hidden_states)
528
+
529
+ # add hidden states from the last decoder layer
530
+ if output_hidden_states:
531
+ all_hidden_states += (hidden_states,)
532
+
533
+ next_cache = next_decoder_cache if use_cache else None
534
+ if not return_dict:
535
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
536
+ return BaseModelOutputWithPast(
537
+ last_hidden_state=hidden_states,
538
+ past_key_values=next_cache,
539
+ hidden_states=all_hidden_states,
540
+ attentions=all_self_attns,
541
+ )
542
+
543
+
544
+ class BaiChuanForCausalLM(PreTrainedModel):
545
+ def __init__(self, config):
546
+ super().__init__(config)
547
+ self.model = Model(config)
548
+
549
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
550
+
551
+ # Initialize weights and apply final processing
552
+ self.post_init()
553
+
554
+ def get_input_embeddings(self):
555
+ return self.model.embed_tokens
556
+
557
+ def set_input_embeddings(self, value):
558
+ self.model.embed_tokens = value
559
+
560
+ def get_output_embeddings(self):
561
+ return self.lm_head
562
+
563
+ def set_output_embeddings(self, new_embeddings):
564
+ self.lm_head = new_embeddings
565
+
566
+ def set_decoder(self, decoder):
567
+ self.model = decoder
568
+
569
+ def get_decoder(self):
570
+ return self.model
571
+
572
+ def forward(
573
+ self,
574
+ input_ids: torch.LongTensor = None,
575
+ attention_mask: Optional[torch.Tensor] = None,
576
+ position_ids: Optional[torch.LongTensor] = None,
577
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
578
+ inputs_embeds: Optional[torch.FloatTensor] = None,
579
+ labels: Optional[torch.LongTensor] = None,
580
+ use_cache: Optional[bool] = None,
581
+ output_attentions: Optional[bool] = None,
582
+ output_hidden_states: Optional[bool] = None,
583
+ return_dict: Optional[bool] = None,
584
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
585
+ r"""
586
+ Args:
587
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
588
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
589
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
590
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
591
+
592
+ Returns:
593
+
594
+ Example:
595
+
596
+ ```python
597
+ >>> from transformers import AutoTokenizer, ModelForCausalLM
598
+
599
+ >>> model = ModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
600
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
601
+
602
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
603
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
604
+
605
+ >>> # Generate
606
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
607
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
608
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
609
+ ```"""
610
+
611
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
612
+ output_hidden_states = (
613
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
614
+ )
615
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
616
+
617
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
618
+ outputs = self.model(
619
+ input_ids=input_ids,
620
+ attention_mask=attention_mask,
621
+ position_ids=position_ids,
622
+ past_key_values=past_key_values,
623
+ inputs_embeds=inputs_embeds,
624
+ use_cache=use_cache,
625
+ output_attentions=output_attentions,
626
+ output_hidden_states=output_hidden_states,
627
+ return_dict=return_dict,
628
+ )
629
+
630
+ hidden_states = outputs[0]
631
+ logits = self.lm_head(hidden_states)
632
+
633
+ loss = None
634
+ if labels is not None:
635
+ # Shift so that tokens < n predict n
636
+ shift_logits = logits[..., :-1, :].contiguous()
637
+ shift_labels = labels[..., 1:].contiguous()
638
+ # Flatten the tokens
639
+ loss_fct = CrossEntropyLoss()
640
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
641
+ shift_labels = shift_labels.view(-1)
642
+ # Enable model parallelism
643
+ shift_labels = shift_labels.to(shift_logits.device)
644
+ loss = loss_fct(shift_logits, shift_labels)
645
+
646
+ if not return_dict:
647
+ output = (logits,) + outputs[1:]
648
+ return (loss,) + output if loss is not None else output
649
+
650
+ return CausalLMOutputWithPast(
651
+ loss=loss,
652
+ logits=logits,
653
+ past_key_values=outputs.past_key_values,
654
+ hidden_states=outputs.hidden_states,
655
+ attentions=outputs.attentions,
656
+ )
657
+
658
+ def prepare_inputs_for_generation(
659
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
660
+ ):
661
+ if past_key_values:
662
+ input_ids = input_ids[:, -1:]
663
+
664
+ position_ids = kwargs.get("position_ids", None)
665
+ if attention_mask is not None and position_ids is None:
666
+ # create position_ids on the fly for batch generation
667
+ position_ids = attention_mask.long().cumsum(-1) - 1
668
+ position_ids.masked_fill_(attention_mask == 0, 1)
669
+ if past_key_values:
670
+ position_ids = position_ids[:, -1].unsqueeze(-1)
671
+
672
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
673
+ if inputs_embeds is not None and past_key_values is None:
674
+ model_inputs = {"inputs_embeds": inputs_embeds}
675
+ else:
676
+ model_inputs = {"input_ids": input_ids}
677
+
678
+ model_inputs.update(
679
+ {
680
+ "position_ids": position_ids,
681
+ "past_key_values": past_key_values,
682
+ "use_cache": kwargs.get("use_cache"),
683
+ "attention_mask": attention_mask,
684
+ }
685
+ )
686
+ return model_inputs
687
+
688
+ @staticmethod
689
+ def _reorder_cache(past_key_values, beam_idx):
690
+ reordered_past = ()
691
+ for layer_past in past_key_values:
692
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
693
+ return reordered_past
694
+
695
+ def process_response(self, response):
696
+ response = response.strip()
697
+ response = response.replace("[[训练时间]]", "2023年")
698
+ punkts = [
699
+ [",", ","],
700
+ ["!", "!"],
701
+ [":", ":"],
702
+ [";", ";"],
703
+ ["\?", "?"],
704
+ ]
705
+ for item in punkts:
706
+ response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
707
+ response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
708
+ return response
709
+
710
+ # copied from https://huggingface.co/THUDM/chatglm-6b-int4/blob/main/modeling_chatglm.py
711
+ @torch.no_grad()
712
+ def stream_chat(self, tokenizer, query: str, history: List = None,
713
+ gen_kwargs: dict = None, logits_processor=None):
714
+ if history is None:
715
+ history = []
716
+ if logits_processor is None:
717
+ logits_processor = LogitsProcessorList()
718
+ logits_processor.append(InvalidScoreLogitsProcessor())
719
+
720
+ if not history:
721
+ prompt = generate_prompt(query)
722
+ else:
723
+ history.append(generate_prompt(query))
724
+ prompt = "".join(history)
725
+
726
+ inputs = tokenizer(prompt, return_tensors="pt")
727
+ inputs = inputs.to(self.model.device)
728
+ for outputs in self.stream_generate(**inputs, **gen_kwargs):
729
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
730
+ response = tokenizer.decode(outputs, skip_special_tokens=True).split("Assistant:")[-1].strip()
731
+ response = self.process_response(response)
732
+ yield response
733
+
734
+ @torch.no_grad()
735
+ def stream_generate(
736
+ self,
737
+ input_ids,
738
+ generation_config: Optional[GenerationConfig] = None,
739
+ logits_processor: Optional[LogitsProcessorList] = None,
740
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
741
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
742
+ **kwargs,
743
+ ):
744
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
745
+
746
+ if generation_config is None:
747
+ generation_config = self.generation_config
748
+ generation_config = copy.deepcopy(generation_config)
749
+ model_kwargs = generation_config.update(**kwargs)
750
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
751
+
752
+ if isinstance(eos_token_id, int):
753
+ eos_token_id = [eos_token_id]
754
+
755
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
756
+ if has_default_max_length and generation_config.max_new_tokens is None:
757
+ warnings.warn(
758
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
759
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
760
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
761
+ UserWarning,
762
+ )
763
+ elif generation_config.max_new_tokens is not None:
764
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
765
+ if not has_default_max_length:
766
+ logger.warn(
767
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
768
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
769
+ "Please refer to the documentation for more information. "
770
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
771
+ UserWarning,
772
+ )
773
+
774
+ if input_ids_seq_length >= generation_config.max_length:
775
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
776
+ logger.warning(
777
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
778
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
779
+ " increasing `max_new_tokens`."
780
+ )
781
+
782
+ # 2. Set generation parameters if not already defined
783
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
784
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
785
+
786
+ logits_processor = self._get_logits_processor(
787
+ generation_config=generation_config,
788
+ input_ids_seq_length=input_ids_seq_length,
789
+ encoder_input_ids=input_ids,
790
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
791
+ logits_processor=logits_processor,
792
+ )
793
+
794
+ stopping_criteria = self._get_stopping_criteria(
795
+ generation_config=generation_config, stopping_criteria=stopping_criteria
796
+ )
797
+ logits_warper = self._get_logits_warper(generation_config)
798
+
799
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
800
+ scores = None
801
+ while True:
802
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
803
+ # forward pass to get next token
804
+ outputs = self(
805
+ **model_inputs,
806
+ return_dict=True,
807
+ output_attentions=False,
808
+ output_hidden_states=False,
809
+ )
810
+
811
+ next_token_logits = outputs.logits[:, -1, :]
812
+
813
+ # pre-process distribution
814
+ next_token_scores = logits_processor(input_ids, next_token_logits)
815
+ next_token_scores = logits_warper(input_ids, next_token_scores)
816
+
817
+ # sample
818
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
819
+ if generation_config.do_sample:
820
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
821
+ else:
822
+ next_tokens = torch.argmax(probs, dim=-1)
823
+
824
+ # update generated ids, model inputs, and length for next step
825
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
826
+ model_kwargs = self._update_model_kwargs_for_generation(
827
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
828
+ )
829
+ unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
830
+
831
+ # stop when each sentence is finished, or if we exceed the maximum length
832
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
833
+ break
834
+ yield input_ids
tokenization_baichuan.py CHANGED
@@ -71,6 +71,11 @@ class BaiChuanTokenizer(PreTrainedTokenizer):
71
  eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
72
  unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
73
  pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
 
 
 
 
 
74
  super().__init__(
75
  bos_token=bos_token,
76
  eos_token=eos_token,
@@ -82,11 +87,7 @@ class BaiChuanTokenizer(PreTrainedTokenizer):
82
  clean_up_tokenization_spaces=clean_up_tokenization_spaces,
83
  **kwargs,
84
  )
85
- self.vocab_file = vocab_file
86
- self.add_bos_token = add_bos_token
87
- self.add_eos_token = add_eos_token
88
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
89
- self.sp_model.Load(vocab_file)
90
 
91
  def __getstate__(self):
92
  state = self.__dict__.copy()
 
71
  eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
72
  unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
73
  pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
74
+ self.vocab_file = vocab_file
75
+ self.add_bos_token = add_bos_token
76
+ self.add_eos_token = add_eos_token
77
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
78
+ self.sp_model.Load(vocab_file)
79
  super().__init__(
80
  bos_token=bos_token,
81
  eos_token=eos_token,
 
87
  clean_up_tokenization_spaces=clean_up_tokenization_spaces,
88
  **kwargs,
89
  )
90
+
 
 
 
 
91
 
92
  def __getstate__(self):
93
  state = self.__dict__.copy()