metadata
library_name: setfit
metrics:
- f1
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
To make introductions between Camelot's Chairman and the Cabinet
Secretary. We discussed the operation of the UK National Lottery and how
to maximise returns to National Lottery Good Causes as well as our plans
to celebrate the 25th birthday of The National Lottery.
- text: Discussion on crime
- text: To discuss Northern Powerhouse Rail and HS2
- text: To discuss food security
- text: Electricity market
inference: false
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.9056603773584904
name: F1
- type: accuracy
value: 0.9572649572649573
name: Accuracy
SetFit
This is a SetFit model that can be used for Text Classification. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1 | Accuracy |
---|---|---|
all | 0.9057 | 0.9573 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("twright8/setfit-oversample-labels-lobbying")
# Run inference
preds = model("Electricity market")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 21.5644 | 153 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (6, 9)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (7.928034854554858e-06, 2.7001088851580374e-05)
- head_learning_rate: 0.009321171293151879
- loss: CoSENTLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0018 | 1 | 8.669 | - |
0.0880 | 50 | 8.6617 | - |
0.1761 | 100 | 12.5549 | - |
0.2641 | 150 | 3.1895 | - |
0.3521 | 200 | 16.3181 | - |
0.4401 | 250 | 0.7513 | - |
0.5282 | 300 | 4.6653 | - |
0.0018 | 1 | 0.0059 | - |
0.0880 | 50 | 3.4564 | - |
0.1761 | 100 | 0.5523 | - |
0.2641 | 150 | 0.2372 | - |
0.3521 | 200 | 4.288 | - |
0.4401 | 250 | 0.0027 | - |
0.5282 | 300 | 0.0002 | - |
0.6162 | 350 | 0.0002 | - |
0.7042 | 400 | 0.0001 | - |
0.7923 | 450 | 0.0015 | - |
0.8803 | 500 | 3.5596 | - |
0.9683 | 550 | 0.0 | - |
1.0 | 568 | - | 10.2261 |
1.0563 | 600 | 0.0 | - |
1.1444 | 650 | 0.0011 | - |
1.2324 | 700 | 0.0013 | - |
1.3204 | 750 | 0.0037 | - |
1.4085 | 800 | 0.0013 | - |
1.4965 | 850 | 0.0002 | - |
1.5845 | 900 | 0.0 | - |
1.6725 | 950 | 0.0 | - |
1.7606 | 1000 | 0.0001 | - |
1.8486 | 1050 | 0.0001 | - |
1.9366 | 1100 | 0.0001 | - |
2.0 | 1136 | - | 8.4908 |
2.0246 | 1150 | 0.0001 | - |
2.1127 | 1200 | 0.0 | - |
2.2007 | 1250 | 0.0005 | - |
2.2887 | 1300 | 0.0004 | - |
2.3768 | 1350 | 0.0 | - |
2.4648 | 1400 | 0.0009 | - |
2.5528 | 1450 | 0.0 | - |
2.6408 | 1500 | 0.0 | - |
2.7289 | 1550 | 0.0 | - |
2.8169 | 1600 | 0.0 | - |
2.9049 | 1650 | 0.0001 | - |
2.9930 | 1700 | 0.0003 | - |
3.0 | 1704 | - | 8.5594 |
3.0810 | 1750 | 0.0001 | - |
3.1690 | 1800 | 0.0 | - |
3.2570 | 1850 | 0.0002 | - |
3.3451 | 1900 | 0.0001 | - |
3.4331 | 1950 | 0.0 | - |
3.5211 | 2000 | 0.0 | - |
3.6092 | 2050 | 0.0 | - |
3.6972 | 2100 | 0.0 | - |
3.7852 | 2150 | 0.0 | - |
3.8732 | 2200 | 0.0002 | - |
3.9613 | 2250 | 0.0001 | - |
4.0 | 2272 | - | 8.4573 |
4.0493 | 2300 | 0.0 | - |
4.1373 | 2350 | 0.0 | - |
4.2254 | 2400 | 0.0002 | - |
4.3134 | 2450 | 0.0 | - |
4.4014 | 2500 | 0.0003 | - |
4.4894 | 2550 | 0.0001 | - |
4.5775 | 2600 | 0.0001 | - |
4.6655 | 2650 | 0.0001 | - |
4.7535 | 2700 | 0.0001 | - |
4.8415 | 2750 | 0.0001 | - |
4.9296 | 2800 | 0.0012 | - |
5.0 | 2840 | - | 8.6305 |
5.0176 | 2850 | 0.0009 | - |
5.1056 | 2900 | 0.0 | - |
5.1937 | 2950 | 0.0001 | - |
5.2817 | 3000 | 0.0 | - |
5.3697 | 3050 | 0.0 | - |
5.4577 | 3100 | 0.0001 | - |
5.5458 | 3150 | 0.0007 | - |
5.6338 | 3200 | 0.0002 | - |
5.7218 | 3250 | 0.0 | - |
5.8099 | 3300 | 0.0001 | - |
5.8979 | 3350 | 0.0002 | - |
5.9859 | 3400 | 0.0 | - |
6.0 | 3408 | - | 8.9528 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu118
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}