latext5 / README.md
turnipseason's picture
Updated usage example
ec91c54 verified
|
raw
history blame
2.09 kB
metadata
license: mit
language:
  - ru
library_name: transformers
pipeline_tag: text2text-generation
tags:
  - math
  - normalization

Описание:

Модель для нормализации русскоязычных текстов, содержащих математические сущности, в формат LaTeX. Модель является дообученной на переведённом&аугментированном датасете "Mathematics Stack Exchange API Q&A Data" версией модели cointegrated/rut5-small.

Description:

This is a model for mathematical text normalization in Russian, based on the cointegrated/rut5-small paraphraser. The model was created by finetuning the paraphraser on a translated&augmented "Mathematics Stack Exchange API Q&A Data" dataset.

Пример использования:

Usage example:

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from IPython.display import display, Math, Latex

model_dir = "turnipseason/latext5"
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
tokenizer = AutoTokenizer.from_pretrained(model_dir)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

def get_latex(text):
  inputs = tokenizer(text, return_tensors='pt').to(device)
  with torch.no_grad():
    hypotheses = model.generate(
    **inputs,
    do_sample=True, num_return_sequences=1,
    repetition_penalty=1.2,
    max_length=len(text),
    num_beams=10,
    early_stopping=True
    )
  for h in hypotheses:
    display(Latex(tokenizer.decode(h, skip_special_tokens=True)))

text = '''лямбда прописная квадрат минус три равно десять игрек куб
        При этом шинус икс равен интеграл от экспоненты до трёх игрек штрих'''
get_latex(text)