metadata
license: cc-by-nc-sa-4.0
language:
- en
metrics:
- f1
- accuracy
widget:
- text: Girls like attention and they get desperate
tags:
- sexism
datasets:
- tum-nlp/sexism-socialmedia-balanced
BERTweet for sexism detection
This is a fine-tuned BERTweet large (BERTweet: A pre-trained language model for English Tweets) model for detecting sexism. The training dataset is new balanced version of Explainable Detection of Online Sexism (EDOS)--sexism-socialmedia-balanced--consisting of 16000 entries in English gathered from social media platforms: Twitter and Gab. It achieved a Macro-F1 score of 0.85 and an Accuracy of 0.88 on the test set for the EDOS task.
How to use
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('tum-nlp/bertweet-sexism')
model = AutoModelForSequenceClassification.from_pretrained('tum-nlp/bertweet-sexism')
# Create the pipeline for classification
sexism_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Predict
sexism_classifier("Girls like attention and they get desperate")
Licensing Information
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.