|
--- |
|
language: zh |
|
tags: |
|
- simcse |
|
datasets: |
|
- dialogue |
|
--- |
|
|
|
# Data |
|
train data is similarity sentence data from E-commerce dialogue |
|
|
|
## Model |
|
model created by [sentence-tansformers](https://www.sbert.net/index.html),model struct is cross-encoder |
|
|
|
### Usage |
|
```python |
|
>>> from transformers import AutoTokenizer, AutoModel |
|
>>> model = AutoModel.from_pretrained("tuhailong/simcse_model") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("tuhailong/simcse_model") |
|
>>> sentences_str_list = ["今天天气不错的","天气不错的"] |
|
>>> inputs = tokenizer(sentences_str_list,return_tensors="pt", padding='max_length', truncation=True, max_length=32) |
|
>>> outputs = model(**inputs) |
|
``` |