tuanio's picture
End of training
fbabb49
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: 1-char-based-freeze_cnn-dropout0.1
    results: []

1-char-based-freeze_cnn-dropout0.1

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2454
  • Wer: 0.1804

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 48
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 200000

Training results

Training Loss Epoch Step Validation Loss Wer
5.3032 0.09 2500 7.0530 1.0
3.4521 0.18 5000 3.6019 1.0
3.3037 0.26 7500 3.4931 1.0
3.2012 0.35 10000 3.4193 1.0
2.3026 0.44 12500 1.9423 0.9873
1.4238 0.53 15000 0.8772 0.6695
1.1592 0.62 17500 0.6630 0.5011
0.861 0.7 20000 0.5460 0.4239
0.8123 0.79 22500 0.4794 0.3830
0.7568 0.88 25000 0.4369 0.3463
0.7182 0.97 27500 0.4111 0.3289
0.6896 1.06 30000 0.4041 0.3102
0.6655 1.14 32500 0.3933 0.2986
0.5738 1.23 35000 0.3676 0.2829
0.6361 1.32 37500 0.3533 0.2727
0.6142 1.41 40000 0.3545 0.2716
0.6346 1.5 42500 0.3428 0.2615
0.5739 1.58 45000 0.3470 0.2578
0.544 1.67 47500 0.3207 0.2490
0.5283 1.76 50000 0.3202 0.2424
0.5552 1.85 52500 0.3187 0.2379
0.5218 1.94 55000 0.3242 0.2383
0.4939 2.02 57500 0.3277 0.2418
0.5141 2.11 60000 0.3058 0.2329
0.5189 2.2 62500 0.3086 0.2273
0.4993 2.29 65000 0.3005 0.2245
0.5156 2.38 67500 0.2998 0.2223
0.4787 2.46 70000 0.2940 0.2173
0.5296 2.55 72500 0.3003 0.2225
0.4759 2.64 75000 0.2995 0.2144
0.485 2.73 77500 0.2882 0.2126
0.4888 2.82 80000 0.2893 0.2189
0.51 2.9 82500 0.2767 0.2046
0.4703 2.99 85000 0.2899 0.2124
0.4406 3.08 87500 0.2787 0.2068
0.4328 3.17 90000 0.2823 0.2070
0.4399 3.26 92500 0.2802 0.2058
0.4788 3.34 95000 0.2741 0.2084
0.4621 3.43 97500 0.2817 0.2038
0.523 3.52 100000 0.2735 0.2015
0.4689 3.61 102500 0.2631 0.1995
0.4502 3.7 105000 0.2689 0.1986
0.4402 3.78 107500 0.2726 0.1987
0.4189 3.87 110000 0.2724 0.1994
0.4526 3.96 112500 0.2596 0.1918
0.4755 4.05 115000 0.2583 0.1900
0.4374 4.14 117500 0.2590 0.1944
0.4155 4.23 120000 0.2695 0.1961
0.4463 4.31 122500 0.2605 0.1909
0.4007 4.4 125000 0.2529 0.1891
0.4156 4.49 127500 0.2568 0.1913
0.4124 4.58 130000 0.2559 0.1889
0.4085 4.67 132500 0.2610 0.1922
0.4474 4.75 135000 0.2588 0.1961
0.4098 4.84 137500 0.2512 0.1877
0.3941 4.93 140000 0.2549 0.1891
0.3917 5.02 142500 0.2544 0.1863
0.4324 5.11 145000 0.2564 0.1882
0.4255 5.19 147500 0.2536 0.1885
0.3894 5.28 150000 0.2538 0.1860
0.4108 5.37 152500 0.2539 0.1860
0.4312 5.46 155000 0.2526 0.1849
0.3786 5.55 157500 0.2504 0.1837
0.4033 5.63 160000 0.2516 0.1852
0.3973 5.72 162500 0.2570 0.1870
0.3994 5.81 165000 0.2499 0.1846
0.4183 5.9 167500 0.2489 0.1835
0.3826 5.99 170000 0.2468 0.1847
0.4103 6.07 172500 0.2477 0.1806
0.4291 6.16 175000 0.2492 0.1835
0.4417 6.25 177500 0.2464 0.1824
0.3962 6.34 180000 0.2476 0.1815
0.4633 6.43 182500 0.2447 0.1818
0.422 6.51 185000 0.2455 0.1802
0.4098 6.6 187500 0.2488 0.1814
0.4018 6.69 190000 0.2453 0.1804
0.4559 6.78 192500 0.2458 0.1823
0.4033 6.87 195000 0.2451 0.1794
0.3829 6.95 197500 0.2453 0.1804
0.3676 7.04 200000 0.2454 0.1804

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1