|
--- |
|
language: ja |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: cc-by-nc-sa-4.0 |
|
model-index: |
|
- name: wav2vec2-live-japanese |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice Japanese |
|
type: common_voice |
|
args: ja |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 22.08% |
|
- name: Test CER |
|
type: cer |
|
value: 10.08% |
|
--- |
|
|
|
# wav2vec2-live-japanese |
|
|
|
https://github.com/ttop32/wav2vec2-live-japanese-translator |
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese hiragana using the |
|
- [common_voice](https://huggingface.co/datasets/common_voice) |
|
- [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) |
|
- [CSS10](https://github.com/Kyubyong/css10) |
|
- [TEDxJP-10K](https://github.com/laboroai/TEDxJP-10K) |
|
- [JVS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus) |
|
|
|
## Inference |
|
```python |
|
|
|
#usage |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese") |
|
processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese") |
|
test_dataset = load_dataset("common_voice", "ja", split="test") |
|
|
|
|
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy() |
|
return batch |
|
|
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset[:2]["sentence"]) |
|
``` |
|
|
|
## Evaluation |
|
```python |
|
|
|
|
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
import pykakasi |
|
import MeCab |
|
|
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese").to("cuda") |
|
processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese") |
|
test_dataset = load_dataset("common_voice", "ja", split="test") |
|
|
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\�‘、。.!,・―─~「」『』\\\\※\[\]\{\}「」〇?…]' |
|
wakati = MeCab.Tagger("-Owakati") |
|
kakasi = pykakasi.kakasi() |
|
kakasi.setMode("J","H") # kanji to hiragana |
|
kakasi.setMode("K","H") # katakana to hiragana |
|
conv = kakasi.getConverter() |
|
|
|
|
|
FULLWIDTH_TO_HALFWIDTH = str.maketrans( |
|
' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!゛#$%&()*+、ー。/:;〈=〉?@[]^_‘{|}~', |
|
' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&()*+,-./:;<=>?@[]^_`{|}~', |
|
) |
|
def fullwidth_to_halfwidth(s): |
|
return s.translate(FULLWIDTH_TO_HALFWIDTH) |
|
|
|
|
|
def preprocessData(batch): |
|
batch["sentence"] = fullwidth_to_halfwidth(batch["sentence"]) |
|
batch["sentence"] = re.sub(chars_to_ignore_regex,' ', batch["sentence"]).lower() #remove special char |
|
batch["sentence"] = wakati.parse(batch["sentence"]) #add space |
|
batch["sentence"] = conv.do(batch["sentence"]) #covert to hiragana |
|
batch["sentence"] = " ".join(batch["sentence"].split())+" " #remove multiple space |
|
|
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy() |
|
return batch |
|
|
|
|
|
test_dataset = test_dataset.map(preprocessData) |
|
|
|
|
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|